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Outline

Background

Micro-mechanical testing

• Nano-indentation

• In situ micro-cantilever testing
 Glassy carbon

 Filter graphite

 Gilsocarbon graphite

 PGA graphite (unirradiated and irradiated)

 HOPG graphite (unirradiated and irradiated)

o Scale up to larger size

Raman spectroscopy: Applications

 Micro-Raman for residual stress

 Polarized-Raman for preferred orientation measurements

Key messages



Nuclear Graphite

o Used as moderators and structural components in operating Advanced Gas-cooled Reactors (AGRs) in the UK

o Life-limiting as it is not replaceable; porous, multi-phase (filler and binder), heterogeneous

o Laboratory tests / inspections are limited by the size of the sample that trepanned from irradiated bricks

o Candidate material for some Gen IV designs



Graphitization

Basic Structural 
Unit (<10Å) 

Highly order 
graphitic 
structure

Oberlin A. Carbon N Y 1984;22:521-41

Desired properties in nuclear-grade graphite:
o High purity; High density; High thermal conductivity; Low CTE
o High irradiation stability (pitch, coke and manufacture process); 
o High strength (flexural: 20-30MPa); 
o Low anisotropy, (less than 1.1, defined by CTE in orthogonal directions)
o Low elastic modulus (~11 GPa for Gilsocarbon)
Facts:
o Damage and fracture
o Microstructure, porosity 
o Residual stresses
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Gilsocarbon graphite: Multi-scale Microstructure



Nuclear Graphite: Multi-scale Characterisation

Room temperatureElevated temperature

Raman spectroscopy

Crystal bonding

Neutron diffraction

Lattice strain

X-ray tomography

Micro-scale deformation

Macro-scale deformation



Micro-mechanical testing

Nano-indentation



Nano-indentation (Ex situ)
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• Measurements at different locations on the same sample
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Nano-indentation (In situ)
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Nano-indentation (In situ)



Micro-mechanical testing

In situ micro-cantilever bending 



• Dualbeam workstation (FEI Helios NanoLab 600i Workstation) 

• Force measurement system (FMS) (Kleindiek Nanotechnik)

• Workstation stage monitored and debris collected

• Step I • Step II • Step III

In situ micro-cantilever bending
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Calibration: Glassy carbon

• Specimens prior to failure • Linear load-displacement relation • Small variation in E with sample size

• Repeatable modulus and flexural strength as measured at macro-scale

• Similar brittle fracture modes observed at micro-scale as in macro-size samples 



Filter graphite
Large pores Surface micro-pores

Embedded micro-pores
X-ray tomography scan of pores
16 µm3 voxel size (5x5x5mm)

Pores in larger cantilevers
In situ observation of fracture as cantilever being deformed



Filter graphite

• Cross-section size varies from 1.8 µm x 1.8 µm to 6.6 µm x 6.6 µm

• Flexural strength changes from ~200 to ~600 MPa

• Elastic modulus varies from 10 GPa to about 40 GPa
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Gilsocarbon graphite



Gilsocarbon graphite



1

2

3

300 nm1 µm

Fracture surface

Loading 

direction

Fracture of 

along the 

crystallites



PGA graphite (unirradiated and neutron irradiated)

o Radiolytically-oxidised (CO2 

environment) PGA graphite 

samples from a Magnox 

reactor supplied by Magnox 

Ltd.

o 15% weight loss

o 33.2 × 1020 DIDO equiv. 

(n/cm2)

o Temp: 287°C

Filler particles

Matrix
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PGA graphite (Irradiated: matrix)

• Cantilevers are made inside the matrix

• Modulus and flexural strength are found to be lower than the unirradiated condition
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PGA graphite (Irradiated: filler particle)



PGA graphite (Irradiated: filler particle)

Liu et al, submitted to Carbon, under review

Elastic modulus:

~80 GPa

< 10 GPa

~50 GPa

• After neutron irradiation, the matrix becomes more 

compliant while the filler particles becomes stiffer 

compared with the unirradiated condition



PGA graphite (Irradiated)

• Heard et al, J Nucl Mat 2011, 418 (223)

What we found before:



















10 µm

Unirradiated

HOPG graphite (Unirradiated and irradiated)

10 µm

Neutron irradiated: ~7dpa
o Highly oriented pyrolytic graphite



Unirradiated

HOPG graphite (Unirradiated and irradiated)

10 µm

Neutron irradiated: ~7dpa
o Highly oriented pyrolytic graphite

3 µm



Permanent displacement (~2.4 µm) 
after load removal
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Scale up to larger size

1 mm

o Cantilever size: 

2x2x10 µm

40x40x200 µm

o In situ testing using nano-

indentation inside SEM
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In situ micro-mechanical testing provides first hand information

Schematic of the structure
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• Detect collective vibration modes of the atoms in the lattice

• App I: Residual stress/strain measurements at RT and at high temperature

• App II: Polarised Raman to measure the preferred orientation of crystals

Raman spectroscopy: Applications



RT

• Residual stress/strain measurements: G peak shifts

800C • G peak position change – local strain

• At 800°C, the histogram distribution of the 121 

measurements appear narrower in the map

• Residual stress in the material is relaxed when heated 

up, and this will affect the mechanical behaviour of 

graphite in service at high temperature

RT G peak shifts variation 800°C G peak shifts variation

Raman spectroscopy: Residual strain



HT
Standard
deviation

RT
Standard
deviation

Change
between

HT and RT

Equivalent hydrostatic 
compressive stress

MPa

0.62 1.93 1.31 235.01
0.69 2.02 1.32 237.44

0.85 1.99 1.15 205.40

• Graphite sample of the size of tens of microns; 

• DAC was used to apply pressure on the sample; 

• Ruby grains to give indication of the stress while the 

Raman spectra of the graphite is monitored;

Diamond Anvil Cell

Raman spectroscopy: Quantify the residual stress

Yang et al, Nanowires –

Fundamental Research, 

Chapter 23, 2011



• Measurements along a crack

Raman spectroscopy: Polarisation and preferred orientation
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3D X-ray tomography of the pore 

structure inside a filler particle



• Measurements along a crack

Raman spectroscopy: Polarisation and preferred orientation
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Key Messages

• A in situ micro-mechanical test approach has been developed and successfully applied to a range 

of carbon and graphite materials to measure the ‘true’ local properties for multi-scale modelling 

input and to explore the microstructure-property relationship

• Raman spectroscopy is a powerful tool for residual stress/strain measurements in carbon/graphite 

based material and polarization provides information on the preferred orientation of local crystals in 

polycrystalline graphite

• A range of techniques have been used to study the microstructure and properties of various 

graphites, from micro-scale to macro-scale, from unirradiated to a range of radiation conditions, 

from room temperature to high temperatures
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