
US	Belle	II	Summer	School: 
Introduction	to	BASF2	

Jake	Benne( 
Carnegie	Mellon	University	

August	15,	2016

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Prerequisites	-	Accounts
• In	order	to	fully	parBcipate	in	the	tutorials,	you	must	ensure	that	you	have	all	

of	the	necessary	accounts	and	permissions	
• Follow	(or	verify)	all	the	steps	in	the	Belle	II	registraBon	procedure	

• You	must	obtain	a	grid	cerBficate,	
• load	it	into	your	browser,	
• join	the	belle	VO	(virtual	organizaBon),	
• register	with	DIRAC, 

(you	really	only	need	steps	5	and	6	on	this	page,	steps	1-4	are	redundant	
with	the	steps	on	the	Belle	II	registraBon	page)	

• and	apply	for	a	DESY	account.  
(Note:	you	need	not	request	access	to	stash,	this	is	now	done	by	default.)	

• BE	AWARE	that	this	process	can	take	several	days! 
Please	iniBate	this	procedure	as	soon	as	possible!

2

https://confluence.desy.de/display/BI/Belle+II+Registration+Procedure
https://confluence.desy.de/display/BI/Computing+GettingStarted

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Prerequisites	-	Resources
• The	KEKCC	schedule	shows	a	brief	shutdown	in	early	August	

• The	storage	area	holding	MC5	and	MC6	samples	will	be	taken	offline	and	
will	be	unavailable	during	the	summer	school	

• It	should	be	possible	to	use	KEKCC	resources	during	the	summer	school	

• However,	it	is	useful	to	have	basf2	prepared	on	your	own	machine,	so	we	will	
use	this	as	a	backup	
• SBll	useful,	I	do	most	of	my	development	on	a	local	repository	anyway	
• Analysis	directories	are	transferable	(can	be	accessed	anywhere)

3

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Prerequisites	-	Resources
• The	following	slides	are	meant	to	guide	you	through	sebng	up	basf2	on	your	

own	compuBng	resources	

• CAUTION:	Only	ScienBfic	Linux	6	and	Ubuntu	14.04	are	officially	supported	for	
basf2.	Other	systems	may	be	used,	but	binary	tarballs	are	only	available	for	
the	officially	supported	systems.	

• 	My	recommenda,on:	If	you	do	not	have	easy	access	to	compuBng	resources	
(via	ssh	for	example),	use	a	laptop	and	a	virtual	desktop	(like	Oracle	
VirtualBox)	for	the	tutorials	
• Be	sure	to	prepare	early,	it	can	take	<me	to	download	and	install	
• You	can	find	step	by	step	instrucBons	below	(do	this	first)	

• You	can	also	set	up	an	ssh	key	pair	for	ease	of	access	to	DESY’s	stash

4

https://www.virtualbox.org/wiki/Downloads

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Some	useful	information
• I	have	detailed	the	installaBon	procedure	in	the	following	slides,	but	there	is	

sBll	a	good	bit	of	development	ongoing.	You	can	check	the	confluence	pages	
for	up	to	date	informaBon.	You	can	also	contact	the	git	support	team	at	 
git-support@belle2.org	

• The	following	pages	review	the	procedures	detailed	in	the	following	and	go	
into	a	li(le	more	detail	
• RegistraBon	procedure	
• Soiware	installaBon	
• Git/Stash	introducBon	
• Git	introducBon	

• You	can	also	navigate	from	those	pages	to	find	addiBonal	details	
• Please	contact	me	if	you	have	quesBons	or	comments	(jbenne(@cmu.edu)

5

mailto:git-support@belle2.org
https://confluence.desy.de/display/BI/Belle+II+Registration+Procedure
https://confluence.desy.de/display/BI/Software+SoftwareInstallation
https://confluence.desy.de/pages/viewpage.action?pageId=35819226
https://confluence.desy.de/pages/viewpage.action?pageId=35832648

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett 6

When	basf2	won’t	compile…

Send	a	note	to	the	experts	at 
soiware@belle2.org	or	git-support@belle2.org!

Or	you	have	other	trouble	with	basf2

mailto:software@belle2.org
mailto:git-support@belle2.org?subject=

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

BASF2	Tutorial
• This	week,	we	will	cover	some	of	the	basics	to	get	started	working	with	basf2,	

the	Belle	II	Analysis	Soiware	Framework	

1. Basics	of	basf2	framework	

2. Basics	of	basf2	analysis	

3. WriBng	your	own	analysis	code	

• Special	thanks	to	Thomas	Kuhr,	ChrisBan	Pulvermacher,	Luis	Pesántez,	and	
Anze	Zupanc,	whose	materials	I	shamelessly	appropriated	borrowed	in	
construcBng	these	slides	
• I	tried	to	modify/add	to	the	exercises	that	currently	exist	so	you	can	treat	

other	tutorials	as	addiBonal	resources

7

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Part	1:	Basics	of	BASF2	framework

• Structure	of	the	framework	
• How	to	begin	working	with	basf2	
• Data	processing	in	basf2	
• Python	steering	files

8

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Before	we	get	started,	a	few	words	on	git
• Git	is	the	version	control	system	used	by	Belle	II	to	organize	source	code,	

documents	and	technical	drawings	
• Git	collects	files	and	their	history	in	repositories	and	mulBple	users	can	add	or	

change	content	in	repositories	and	all	change	history	is	tracked	
• DESY's	Stash	(stash.desy.de)	is	a	website	which	hosts	Git	repositories,	

provides	user	authenBcaBon	and	allows	to	interacBvely	browse	the	content	of	
Git	repositories	
• You	can	find	some	details	on	the	introducBon	to	Git	page	and	the	links	

found	therein

9

https://confluence.desy.de/pages/viewpage.action?pageId=35819226

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Software	structure
• tools:	scripts	to	set	up	or	install	the	soiware	
• externals:	soiware	we	use,	but	wri(en	by	others,	like	Root,	Geant4,	etc.	
• releases:	our	official	basf2	soiware	
• your	code

10

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Software	structure
• tools:	scripts	to	set	up	or	install	the	soiware	
• externals:	soiware	we	use,	but	wri(en	by	others,	like	Root,	Geant4,	etc.	
• releases:	our	official	basf2	soiware	
• your	code	

• Let’s	get	started!	Check	for	the	centrally	installed	releases.	At	kekcc:	

• On	your	own	system,	central	releases	are	stored	at	the	level	of	the	tools	
directory.	For	example,	on	my	machine:

11

[user	~]$		ls	/sw/belle2	
[user	~]$		ls	-ltr	/sw/belle2/releases

[jvbennett	~]$		ls	/home/jbennett/basf2/releases

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Tools
• First,	we	need	to		configure	the	Belle	II	environment	

• On	my	own	machine:	

• Has	to	be	done	in	each	new	shell	

• Now	we	have	access	to	some	useful	environment	variables:	
• $BELLE2_SOFTWARE_REPOSITORY,	$BELLE2_TOOLS,	$BELLE2_USER

12

[jvbennett	~]$	source	/home/jbennett/basf2/tools/setup_belle2	
Belle	II	software	tools	set	up	at:	/home/jvbennett/Belle2/tools

[user	~]$	source	/sw/belle2/tools/setup_belle2	
Belle	II	software	tools	set	up	at:	/sw/belle2/tools

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Release	setup
• Next	we	need	to	indicate	which	soiware	release	we	will	be	using	

• Now	you	can	use	basf2	(see	next	slide)	
• Requires	setup	of	tools	(last	slide)	
• Has	to	be	done	in	each	new	shell	

• Note:	This	does	not	create	a	working	release	for	you.	You	are	just	poinBng	to	
the	central	release	

• More	useful	environment	variables:		
• $BELLE2_RELEASE,	$BELLE2_RELEASE_DIR

13

[user	~]$	setuprel	release-00-07-01	
Environment	setup	for	release:	release-00-07-01	
Central	release	directory				:	/…/releases/release-00-07-01

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Useful	tricks
• Setup	an	environment	variable	to	point	to	the	tools	level	directory 

(where	all	the	acBon	happens…)	

• Then	it	is	easier	to	set	up	your	environment	

• Even	tricksier:	do	all	of	this	in	your	login	file!	(.bashrc	or	.tcshrc	for	example)

14

[bash	~]$	export	BASF2_DIR=‘/home/jbennett/basf2’	
[tcsh		~]$	setenv	BASF2_DIR	‘/home/jbennett/basf2’

[user	~]$	source	$BASF2_DIR/tools/setup_belle2	
[user	~]$	setuprel	release-00-07-01

export BASF2_DIR=‘/home/jbennett/basf2’
source $BASF2_DIR/tools/setup_belle2.sh
setuprel release-00-07-01

you	may	wish	to	drop	this	line	  
unless	you	plan	to	use	a	specific	 

release	almost	exclusively

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

BASF2
• In	every	new	shell:

15

[user	~]$	source	/sw/belle2/tools/setup_belle2	
Belle	II	software	tools	set	up	at:	/sw/belle2/tools

[user	~]$	setuprel	release-00-07-01	
Environment	setup	for	release:	release-00-07-01	
Central	release	directory				:	/…/releases/release-00-07-01

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett 16

• Helpful	tool	(not	only	for	basf2)	
• basf2	--help

BASF2
[user	~]$	basf2	--info	

		BASF2	(Belle	Analysis	Software	Framework	2)				
	Copyright(C)	2010-2016		Belle	II	Collaboration		
												Version	release-00-07-01													

--	
BELLE2_RELEASE:											release-00-07-01	
BELLE2_RELEASE_DIR:							/home/jvbennett/BelleII/releases/
release-00-07-01	
BELLE2_LOCAL_DIR:										
BELLE2_SUBDIR:												Linux_x86_64/opt	
BELLE2_EXTERNALS_VERSION:	v01-01-08	
BELLE2_ARCH:														Linux_x86_64	
Kernel	version:											3.13.0-71-generic	
Python	version:											3.5.0	
ROOT	version:													6.06/00	

basf2	module	directories:	
		/home/jvbennett/BelleII/releases/release-00-07-01/modules/
Linux_x86_64/opt	
--

environment	variables

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Modules
• In	basf2,	all	work	is	done	in	processing	blocks	called	modules

17

[user	~]$	basf2	-m	
[user	~]$	basf2	-m	EventInfoSetter

quite	a	long	list	now!

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Modules
• In	basf2,	all	work	is	done	in	processing	blocks	called	modules	

• Modules	are	executed	in	strict	linear	order	within	the	path	
• The	data	to	be	processed	by	the	modules	is	stored	in	a	common	storage	

called	the	DataStore

18

[user	~]$	basf2	-m	
[user	~]$	basf2	-m	EventInfoSetter

quite	a	long	list	now!

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

BASF2	subsystems
• Modular	nature	of	basf2	framework	protects	against	undesired	dependencies	

• Central	libraries	can	be	accessed	by	different	modules		
• The	Module	pool	is	filled	by	dynamically	loading	modules	at	runBme	

• Users	can	select	modules	from	the	pool	and	add	them	to	the	path

19

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Steering	hiles
• The	basf2	framework	is	controlled	by	a	python	steering	script	

• Use	this	to	create	paths,	add	modules,	etc.

20

#!/usr/bin/env python
-*- coding: utf-8 -*-

from basf2 import *

main = create_path()

amodule = register_module('module_name')
amodule.param('param_name', value)
amodule.param({'param_name1': value1,
'param_name2': value2})
main.add_module(amodule)

main.add_module('module_nameB', param_nameB=valueB)

process(main)

create	a	path

register	a	module

add	it	to	the	path	
(order	ma(ers)

process	the	path

set	some	parameters

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Alternate	paths
• More	than	one	path	may	be	defined	in	a	steering	file

21

#!/usr/bin/env python
-*- coding: utf-8 -*-

from basf2 import *

main = create_path()
emptypath = create_path()

amodule = register_module(‘module_name’)
main.add_module(amodule)

process(main)

create	an	empty	path	(not	used)

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett 22

• A	module	can	set	the	return	value	for	each	event	

• The	return	value	can	then	be	used	to	move	to	an	alternate	path

Exiting	evaluation	using	an	empty	path

setReturnValue(bool)

main = create_path()
emptypath = create_path()

amodule = register_module(‘module_name’)
main.add_module(amodule)
amodule.if_false(emptypath)

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

–Paul Halmos

“The best way to learn is to do;
the worst way to teach is to talk.”

23

(Hungarian-born American mathematician who made fundamental
advances in the areas of mathematical logic, probability theory, statistics,

operator theory, ergodic theory, and functional analysis.)

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Exercise	1:	Working	with	basf2

a) Write	a	steering	file	exercise1.py	that	creates	10	(empty)	events	and	execute	
it	with  
	  

b) Add	a	module	that	prints	the	event	number	

c) Limit	the	number	of	events	to	3	via	the	command	line	

d) Add	a	module	that	writes	a	ROOT	output	file	exercise1.root	and	look	at	the	
content	with	the	root	browser	

e) Change	the	output	file	name	via	the	command	line	

f) Add	the	gearbox	and	event	generator	module	

g) Remove	the	gearbox	module	(it	is	unnecessary	for	a	job	with	both	simulaBon	
and	reconstrucBon)	and	add	the	standard	simulaBon	and	reconstrucBon

24

[user	~]$	basf2	exercise1.py

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Exercise	2:	If	you	have	done	this	before…

a) Copy	the	steering	file	for	exercise	1	to	exercise2.py.	Modify	the	code	to	only	
simulate	detectors	up	to	the	CDC	(hint:	look	at	the	arguments	for	
add_simulaBon	and	add_reconstrucBon).	

b) Tell	the	CDCDedxPID	module	to	enable	the	debug	output	

c) Limit	the	output	of	the	RootOutput	module	to	only	include	DedxLikelihoods,	
DedxTracks,	and	EventMetaData	DataStore	objects	

Note:	You	can	look	through	the	available	DataStore	objects	in	the	Doxygen	
documentaBon:	h(ps://belle2.cc.kek.jp/internal/soiware/development/	

-	In	the	lei	pane,	expand	the	“Modules”	tab,	then	“Data	objects”,	then	the	
parBcular	detector	specific	data	objects	tabs

25

https://belle2.cc.kek.jp/internal/software/development/

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

1.	(a)	Write	a	steering	file	exercise1.py	that	creates	10	(empty)	events

26

#!/usr/bin/env python
-*- coding: utf-8 -*-

from basf2 import *

main = create_path()

eventinfosetter = register_module('EventInfoSetter')
eventinfosetter.param('evtNumList', [10])
main.add_module(eventinfosetter)

process(main)

Create	a	path

Register	the	module 
EventInfoSe(er

Add	it	to	the	path

Process	the	path

Set	the	parameter 
for	number	of	events

[user	~]$	basf2	exercise1.py

• Execute	with

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

1.	(b)	Add	a	module	that	prints	the	event	number	

1.	(c)	Limit	the	number	of	events	to	3	via	the	command	line	

1.	(d)	Add	a	module	that	writes	a	ROOT	output	file	exercise1.root	and	look	at	the	
content	with	the	root	browser

27

main.add_module(register_module('EventInfoPrinter'))

[user	~]$	basf2	exercise1.py	-n	3

rootoutput = register_module('RootOutput')
rootoutput.param('outputFileName', 'exercise1.root')
main.add_module(rootoutput)

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

1.	(e)	Change	the	output	file	name	via	the	command	line	

1.	(f)	Add	the	gearbox	and	event	generator	module

28

[user	~]$	basf2	exercise1.py	-o	test.root

main.add_module(register_module('Gearbox'))
main.add_module(register_module('EvtGenInput'))

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Using	predehined	methods

• Look	at	the	add_reconstrucBon	method	in:	 
$BELLE2_RELEASE_DIR/reconstrucBon/scripts/reconstrucBon.py	

• Exercise	1.	g)	Remove	the	gearbox	module	(because	it's	included	in	the	
standard	simulaBon)	and	add	the	standard	simulaBon	and	reconstrucBon

29

#!/usr/bin/env python
-*- coding: utf-8 -*-

from simulation import add_simulation
from reconstruction import add_reconstruction

...

add_simulation(main)
add_reconstruction(main)

Make	sure	to	include	
the	necessary	methods

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Summary	of	Exercise	1

30

#!/usr/bin/env python
-*- coding: utf-8 -*-

from basf2 import *
from simulation import add_simulation
from reconstruction import add_reconstruction

create the path
main = create_path()

use EventInfoSetter to create 10 (empty) events
eventinfosetter = register_module('EventInfoSetter')
eventinfosetter.param('evtNumList', [10])
main.add_module(eventinfosetter)

use EventInfoPrinter to print some info to the screen
main.add_module(register_module('EventInfoPrinter'))

generate events with EvtGenInput
main.add_module(register_module('EvtGenInput'))

standard simulation and reconstruction
add_simulation(main)
add_reconstruction(main)

write the results to file
rootoutput = register_module('RootOutput')
rootoutput.param('outputFileName', 'exercise1.root')
main.add_module(rootoutput)

start processing the modules
process(main)

Create	10	empty	events

Print	metadata	info  
about	the	events

Create	a	path

Generate	events	 
with	EvtGen

Write	the	output		
to	a	ROOT	file

Make	sure	to	include	
any	necessary	methods

Run	the	standard	simulaBon		
and	reconstrucBon

Process	the	path

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

2.	(a)	Copy	the	steering	file	for	exercise	1	to	exercise2.py.	Modify	the	code	to	
only	simulate	detectors	up	to	the	CDC

31

only simulate up to CDC
components = [
 'MagneticField',
 'BeamPipe',
 'PXD',
 'SVD',
 'CDC'
]

add_simulation(main, components)
add_reconstruction(main, components)

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

2.	(b)	Tell	the	CDCDedxPID	module	to	enable	the	debug	output	

2.	(c)	Limit	the	output	of	the	RootOutput	module	to	only	include	
CDCDedxLikelihoods,	CDCDedxTracks,	and	EventMetaData	DataStore	objects	

32

for m in main.modules():
 if m.name() == 'CDCDedxPID':
 m.param('enableDebugOutput', True)

rootoutput = register_module('RootOutput')
rootoutput.param('outputFileName', 'exercise2.root')
rootoutput.param('branchNames', ['CDCDedxLikelihoods', 'CDCDedxTracks',
'EventMetaData'])
main.add_module(rootoutput)

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Parallel	processing	in	BASF2
• Enable	parallel	processing	by	using	the	-p	argument	
• Splits	path	into	three	parts	

1. Serial	input	path	(usually	reading	from	file	or	generaBng)	
2. Modules	that	are	parallel	enabled	are	run	on	mulBple	cores	
3. Serial	output	path	for	wriBng	out	data	

Quick	Exercise	(if	possible):	Run	exercise1.py	in	parallel	(-p	2)	for	100	events

33

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Event	display
• Display	module	provides	an	impressive	visualizaBon	for	files	containing	

MCParBcles/SimHits	and/or	fi(ed	tracks	

Quick	Exercise:	Use	the	Display	module	to	look	at	events	in	exercise1.root

34

b2display MyFile.root

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Part	2:	Writing	your	own	analysis	code

• Sebng	up	the	analysis	environment	
• CreaBng	new	basf2	modules	
• Commibng	code	to	git	repositories	

First,	create	a	git	repository	for	your	analysis	code:	

(The	second	argument	to	‘newana’	is	the	central	release	 
on	which	you	will	base	your	analysis)

35

[user	~]$	newana	Tutorials-08-2016	release-00-07-01	
[user	~]$	cd	Tutorials-08-2016	
[user	~]$	setupana

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Set	up	your	analysis	repository
• Now	you	need	to	configure	the	git	repository	
• Set	the	username	and	email	to	be	associated	with	the	repository	

• IniBalize	the	repository	

• You	can	browse	the	(empty)	repository	on	stash: 
h(ps://stash.desy.de/projects/B2A	

		Quick	Exercise:	Move	exercise1.py	and	exercise2.py	to	this	 
																														directory	and	check	them	into	the	repository	(next	slide)

36

[user	~]$	git	conhig	--global	user.name	“Your	Name”	
[user	~]$	git	conhig	--global	user.email	“youremail@example.com”

[user	~]$	git	init

https://stash.desy.de/projects/B2A

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Add	hiles	to	your	analysis	repository
• Add	your	file	to	version	control	

• This	does	not	add	the	file	to	the	repository,	it	just	signals	that	git	should	track	
changes	of	the	specified	files	

• Next,	commit	the	files	to	the	repository	

• Finally,	publish	the	changes	to	the	DESY	stash	server

37

[user	~]$	cp	path/to/examples/example1.py	.	
[user	~]$	git	add	example1.py

[user	~]$	git	commit	-m	“commit	message”

[user	~]$	git	push

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Exercise	3:	Writing	an	analysis	module

From	within	your	analysis	repository:	

a) Use	the	newmod	tool	to	create	a	source	code	template	for	a	module	
Exercise3	that	passes	or	fails	events	based	on	the	quality	of	tracks	
• Use	a	parameter	to	store	a	boolean	value	(defaults	to	true)	
• The	required	input	type	name	is	TrackFitResult	
• Only	the	event	method	is	needed	

b) Look	at	the	generated	source	code	and	try	to	understand	it	

c) Add	a	few	lines	to	determine	the	track	quality	of	all	tracks	and	set	the	return	
value	to	false	if	any	tracks	have	a	P	value	less	than	0.001	
• Use	C++11	range	based	for	loop  

					for	(const	auto	fitresult	:	m_fitresults)	
• Use	the	getPValue()	method	of	the	TrackFitResult	class

38

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett 39

[user	~]$	newmod	Exercise3	
Your	name	[jbennett]:	Jake	Bennett	
Short	module	description:	An	example	module	that	passes	or	fails	events	based	on	track	quality	
Long	module	description	(hinish	with	ctrl-D):	
Please	enter	the	module	parameters	one	by	one.	
Enter	an	empty	name	to	hinish	the	list	of	module	parameters.	
The	following	key	words	for	parameter	types	can	be	used:	
i	for	int,	d	for	double,	s	for	string,	b	for	bool.	
Add	a	v	before	the	type	letter	for	vectors.	
All	other	strings	will	be	taken	directly	as	type	names.	
		Name												:	pass	
				Type										:	b	
				Description			:	Boolean	to	pass	or	fail	events	
				Default	[none]:	true		
		Name												:		
Please	enter	the	required/optional	input	data	types:	
		Input	type													:	TrackFitResult	
				Array	(y/n)	[y]						:	y	
				Required	(y/n)	[y]			:	y	
				Branch	name	[default]:		
				Variable	name								:	Aitresults	
				Description										:	Array	of	TrackFitResults	
		Input	type													:		
Please	enter	the	output	data	types:	
		Output	type												:		
Please	select	the	required	module	methods:	
		beginRun			(y/n)	[n]:		
		event						(y/n)	[n]:	y	
				description							:	Pass	or	fail	events	based	on	track	quality	
		endRun					(y/n)	[n]:		
		terminate		(y/n)	[n]:		
		destructor	(y/n)	[n]:		
A									Exercise3Module.h	
A									Exercise3Module.cc

		Code	to	add	to	event	loop:	
		m_pass	=	true;	
		for	(const	auto	fitresult	:	m_fitresults){	
				if	(fitresult.getPValue()	<	0.001)	m_pass	=	false;	
		}	
		setReturnValue(m_pass);

http://Exercise3Module.cc

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Exercise	3:	Writing	an	analysis	module
d)	Compile	your	code	with	scons	(from	the	top	analysis	directory)	

e)	Check	that	the	framework	knows	about	your	module	(basf2	-m)	

f)	Modify	exercise1.py	and	add	your	module	to	the	path.	Use	 
		an	empty	path	to	stop	execuBon	of	events	that	your	module	 
		fails.	Also	change	the	output	file	to	exercise3.root.  
 
 
 
 
 
 

g)	Run	the	revised	exercise1.py	

h)	Compare	the	output	with	exercise1.root 
	

40

main = create_path()
emptypath = create_path()

amodule = register_module(‘module_name’)
main.add_module(amodule)
amodule.if_false(emptypath)

root	[1]	tree->Draw("TrackFitResults.m_pValue")

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Exercise	3:	Writing	an	analysis	module
i) 	Use	git	to	compare	the	modified	exercise1.py	to	that	in	the	repository	 
		(git	diff	or	git	status)	

j) 	Move	(mv)	your	local	copy	of	exercise1.py	to	exercise3.py	and	check	it	 
		into	the	repository.	Also	use	git	to	check	out	the	original	version	of	 
		exercise1.py.  
		(git	add	exercise3.py; 
			git	commit	-m	“message”; 
			git	push; 
			git	checkout	master	--	exercise1.py)  

k)	If	your	module	is	working,	commit	it	to	the	repository	 
		(git	add	Exercise3*;	git	commit	-m	“message”;	git	push)	

l) 	Repeat	these	steps,	but	use	exercise2.py	instead	of	exercise1.py.

41

add	the	file	to	the	git	directory

create	the	import

check	out	the	file	in	the	repository

push	the	changes	to	the	repository

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

Solutions	and	additional	resources

• For	my	soluBons	to	the	exercises,	take	a	look	at	my	git	repository:	 
h(ps://stash.desy.de/projects/B2A/repos/jbenne(_tutorials-08-2016/browse	

• On	Tuesday,	we	will	discuss	the	Belle	II	analysis	framework	

• More	examples	exist	in	other	basf2	tutorials  
CAUTION:	basf2	has	evolved	-	older	tutorials	may	not	work	“out	of	the	box”	
• IntroducBon	to	basf2	by	Thomas	Kuhr	and	ChrisBan	Pulvermacher	
• Analysis	Tutorial	by	Luis	Pesantez;	Part	2	
• Analysis	Soiware	Tutorial	June	2016	by	Anze	Zupanc

42

https://stash.desy.de/projects/B2A/repos/jbennett_tutorials-08-2016/browse
http://kds.kek.jp/getFile.py/access?contribId=378&sessionId=59&resId=0&materialId=slides&confId=18508
http://kds.kek.jp/materialDisplay.py?contribId=380&sessionId=59&materialId=slides&confId=18508
http://kds.kek.jp/getFile.py/access?contribId=381&sessionId=59&resId=0&materialId=slides&confId=18508
https://kds.kek.jp/indico/event/21975/

 US Belle II Summer School: August 2016 | Introduction to BASF2 | J. Bennett

You	can	hind	more	information	online
• Belle	II	page	(navigate	to	soiware,	physics->analysis,	etc)	

• h(ps://www.belle2.org	
• basf2	manual	

• h(ps://confluence.desy.de/display/BI/Soiware+Basf2manual	
• basf2	documentaBon	

• h(ps://belle2.cc.kek.jp/internal/soiware/	
• Mainling	lists	

• h(ps://lists.belle2.org/sympa	
• Git/stash	resources	

• IntroducBon:	h(ps://confluence.desy.de/pages/viewpage.acBon?
pageId=35819226	

• Personal	repositories:	h(ps://stash.desy.de/users/username

43

https://www.belle2.org
https://confluence.desy.de/display/BI/Software+Basf2manual
https://belle2.cc.kek.jp/internal/software/
https://lists.belle2.org/sympa
https://confluence.desy.de/pages/viewpage.action?pageId=35819226
https://stash.desy.de/users/username

