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I. Motivation: Color singlets, octets and NRQCD

• The context: almost-but-not-quite-complete success of Nonrelativistic QCD (NRQCD)
in describing high-pT heavy quarkonium production at hadron colliders. (viz. Polarization,

associated production)

• The intriguing puzzles of factorization in quarkonium production.

• Large NLO, NNLO corrections associated with color configurations previously thought
to be small (Artoisenet, Campbell, Lansberg, Maltoni, Tramontano: 2007,8).

• Size of color singlet cross sections seems to upset long-held expectations for gluon frag-
mentation/color octet dominance

• Do we need to widen the NRQCD formalism? Can we?
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• In a nutshell: it’s useful to develop a formalism that incorporates both
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• Despite the fact that gluon fragmentation dominates by a power of pT , eventually.
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Background of NRQCD: historical sketch

• What makes heavy quarkonium decay and production special?:
The annihilation/creation of valence quarks is perturbative.

• What of hadronization?
Color state at annihilation/creation?

• “Color singlet model (CSM)”:
pair is neutral right down/up to short distances.

• CSM limitations:

∗ IR divergences in “P-wave” decay width

∗ Rates of high-pT HQonium production
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The NRQCD solution (Bodwin, Braaten and Lepage 1994) (BBL)

• Work in HQonium rest frame:
“Integrate out” HQ dynamics (O(αns (mQ)))
separating nonrelativistic quark & antiquark fields ψ & χ from the full Dirac field.

• Factorize hadronization and expand in orders of vrel ⇒ NRQCD

• Color octet and color singlet ψχ ⇒ HQonium. Octet appears with 1/p4
T at LO in the

coefficient function, while singlet behaves as 1/p8
T at LO.

• Symmetries provide many predictions
(the hallmark of effective theories)

• The remaining issue – when is the effective theory “effective”?
(the essential question for effective theories)
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II. Leading-power Factorization and NRQCD

Collinear factorization and fragmentation

• Heavy quarkonium production at high pT

• Leading power: factorization into fragmentation function
(A classic result, clarified for hadroproduction in Nayak, Qiu, GS, (2005) (NQS))

dσA+B→H+X(pT ) = dσ̂A+B→g+X(pT/zµ)⊗DH/g(z,mc, µ) + O(m2
c/p

2
T ) ,

plus contributions of other light partons.

• With DH/g defined as a VEV:

DH/g(z,mc, µ) ∝
1

P+
Trcolor

∫
dy−e−i(P

+/z)y−〈F+λ(0) [Φ(g)
n (0)]† a†H(P+) aH(P+) Φ(g)

n (y−)F+
λ (y−)〉

• With “Wilson lines” Φn(x−) in direction “n”.
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• The Wilson line [ a.k.a. path ordered exp, nonabelian phase,
eikonal line] in x− direction (nµ = δµ−):

Φ(g)
n (x−) = P exp

[
−ig

∫ ∞
0
n ·A(adj)

(
(x− + λ)n

) ]

• To the jet, all that’s left of the rest of the world is gluon source!
Fragmentation analog of “current quark” in DIS.
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• And what NRQCD says for production:

dσA+B→H+X(pT ) =
∑

n
dσ̂A+B→cc̄[n]+X(pT ) 〈OHn 〉

• With VEVs of the “production” operators (BBL 1994, NQS 2005)

OHn (0) = χ†Kncψ(0) Φ†l,cb(0)
(
a†HaH

)
Φl,ba(0)ψ†K′n aχ(0)

Here light-like direction l is arbitrary, at least to NNLO.

• What needed to be checked, and remains to be generalized: diagrams like these:
argument for NRQCD factorization is based on the conjecture that all infrared regions in these
diagrams cancel after this limited sum over cuts [1]. In fact, we shall see that this is the case
at NNLO only if we employ the gauge-completed definitions for NRQCD matrix elements, as in
Eq. (5) above.
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Figure 2: Representative NNLO contributions to g → cc̄ fragmentation in eikonal approximation.

As at NLO, we will concern ourselves here with infrared behavior at order v2, which may be
computed by evaluating each diagram in eikonal approximation and then expanding their sum in
q/P , or by expanding the diagrams first, as in Eq. (6). Noting that the two approaches give the
same answer, we summarize the results here, and provide details of the calculations elsewhere
[13].

The individual classes of diagrams in Fig. 2a and 2b, for which two gluons are exchanged
between the quarks and the Wilson line, satisfy the infrared cancellation conjecture of Ref. [1],
by summing over the possible cuts and connections to quark and antiquark lines, as do diagrams
that have three gluon-eikonal vertices on the quark pair and one on the Wilson line. For the
class of diagrams related to Fig. 2c, however, with a three-gluon interaction, this cancellation
fails. Expanding again to second order in the relative momentum q, the full contribution from
Fig. 2c, found by cutting the gluon line k1 and the Wilson line can be written by analogy to Eq.
(6) as

Σ(2c)(P, q, l) = − 16i g4µ4ε
∫ dDk1

(2π)D

dDk2

(2π)D
2π δ(k2

1) lλ Vνµλ[k1, k2]

× [qµ(P · k1) − (q · k1)P
µ] [qν(P · k1) − (q · k2)P

ν]

× 1

[P · k1 + iϵ]2 [P · k2 − iϵ]2

× 1

[k2
2 − iϵ] [(k2 − k1)2 − iϵ] [l · (k1 − k2) − iϵ]

, (7)

where Vνµλ[k1, k2] represents the momentum part of the three-gluon coupling. As in Eq. (6), we
have suppressed color factors and momentum dependence at the scale mc.

As observed above, the field-strength vertices eliminate collinear singularities on a diagram-
by-diagram basis. The leading singularities in (7) and related diagrams are therefore never worse
than 1/ε2. Summing over all such contributions, however, we find a noncancelling real infrared
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can have

α2
s

~v 2

ε2

but not (NQS 2005)

α2
s

(~v ·~l )2

ε2

• This is not obvious at even at NNLO. Is the theory really “effective”?
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• Nevertheless, what we conclude by assuming the extension of this result, and combining
it with the basic LP factorization is

DH/g(z,mc, µ) =
∑

n
dg→cc̄[n](z, µ,mc) 〈OHn 〉

with perturbative dg→cc̄.

• The details of the operator definitions of the matrix elements are not essential to use
this conjecture, it is their “universality” that is important.

• It was recognized early on that this form implies that at high pT color and polarization
states of the pair reflect those of the gluon – color octet and transverse. Corrections
that involve singlet matrix elements are high order and small. Similarly for longitudinal
polarizations.
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• By now LP fits to the 〈OHn 〉 for K → 3S
[1,8]
1 , 1S

[8]
0 and 3P

[8]
J operators, with exact NLO

calculations and NP evolution. NLO is absolutely necessary. Many authors are here!

. . . Butenschoen and Kniehl (2012); Chao, Ma, Shao, K. Wang, Y.J. Zhang (2012); Gong, Wan, J.-X.

Wang, H.-F. Zhang (2013); Bodwin, Chung, Kim, Lee (2014); Faccioli, Knunz, Lourenco, Seixas, Wohri

(2014); Bodwin, Chao, Chung, Lee, Ma (2015) . . .

The issues that remain might be summarized as

• Polarization

• The emergence of color singlet contributions at NLO

• The “global” picture for hadron collisions, deep-inelastc scattering and leptonic annihi-
lation to hadrons

The extension to NLP factorization is an attempt to contribute to an eventual synthesis of
all these data.
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III. Factorization and NRQCD Beyond Leading Power

• Where leading power factorization comes from . . .

• Systematic identification of “pinch surfaces”: lower-dimensional subspaces of momentum
space that lead long-distance sensitivity. This is how we know leading power is really
leading to all orders in PT.

• The general picture in “cut diagram notation”:

C

JC/g

g

g

= H

J1

x

S
C

DC/g!1+2 ->g+X

P exp p A.

g

=!1+2 ->C+X
x~

g

• Fragmenting parton sees gluons only in “universal” way. Other effects cancel at LP.
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• Leading power (LP) is a self-consistent formalism. But it doesn’t capture everything.
There are also nonleading pinch surfaces, which do not produce leading power (NLP),
but would induce new scales dynamically, divided by powers of the large momentum
transfer. Can “usually” be neglected, but always?

• May depend on the size of dynamical matrix elements, and role in evolution.

• Could this scale be mQ for heavy quarkonium?

• For scattering amplitudes involving external hadrons, a formalism has existed for quite
some time (Brodsky & Lepage; Efremov & Radyushkin, circa 1980.) How can we enlarge the
formalism for cross sections?
(Qiu, GS, 91 for initial state effects. Guo, Wang, 2000)

• Interesting note: related considerations have surfaced recently in NLP threshold resum-
mation (Bonocore, Laenen, Magnea, Melville, Vermaza, White 2015) for cross sections and in soft
photon and graviton theorems for ampliudes (Larkoski, Neil, Stewart 2014).
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• Nonleading powers include many interesting effects that are probably not “big” at hadron
colliders . . .

• And which certainly don’t directly relate to calculation of
quarkonia production . . .

g

T

U

V

• T: multiparton initial state, U: soft lines emitted from short distances, V final-state
interactions that influence fragmentation (non-factoring, power suppressed)
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• We study: power correction from pair creation at short distances.
Suppressed by dimensional counting.

• The corresponding leading regions:

QQ

J1

2J

= H
QQ

J1

x

S
C(p)

QQ C(p)

JC/(QQ)

DC/(QQ)!1+2 ->(QQ+X)
x

P exp p A.

!1+2 ->(QQ)+X =

QQ

~

• Still “factorized” with even smaller corrections. It’s additive to leading power.
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• Extended factorization:

A. The factorization formula

The physical picture of the factorization that we have in mind can be presented in terms

of the sample diagrams in Fig. 1. The diagram on the left represents the leading power

term in m2
H/p2

T expansion and can be interpreted as the perturbative production of a single

parton (say a gluon of momentum pg) at the short-distance scale 1/pT . The parton then

fragments into a heavy quarkonium. The diagram on the right represents a first subleading

power term in the m2
H/p2

T expansion and corresponds to the production of a heavy quark

pair at the short distance scale, which then fragments into a heavy quarkonium. We have

the corresponding factorization formula,

dσA+B→H+X(P ) ≈
∑

f

dσ̂A+B→f+X(pf = P/z, µF ) ⊗ Df→H(z, mQ, µF ) (1)

+
∑

[QQ̄(κ)]

dσ̂A+B→[QQ̄(κ)]+X(P[QQ̄] = P/z, {zi}, µF )

⊗ D[QQ̄(κ)]→H(z, {zi}, mQ, µF ) + O
(

m4
H

p4
T

)
,

whare P = (2mT /
√

s ey, 2mT /
√

s e−y, pT ) is the quarkonium momentum with rapidity y

and mT =
√

m2
H + p2

T , and pT =
√

p2
T . The

∑
f in Eq. (1) runs over all parton flavors

f ,
∑

[QQ̄(κ)] runs over both color and spin states of heavy quark pairs, and ⊗ represents

the convolution in the momentum fraction z, and {zi} with i = 1, 2. The cross sections

dσ̂A+B→f+X and dσ̂A+B→[QQ̄(κ)]+X in Eq. (1) include all information on the incoming state,

including convolutions with parton distributions when A and B are hadrons, at factorization

scale µF . Under the approximation, pT $ mH ∼ 2mQ, the momentum P in the partonic

hard part is the “massless” part of the heavy quarkonium momentum. The Df→H are

fragmentation functions for off-shell partons of flavor f to produce a quarkonium state H of

momentum P [29, 39]. The mQ-dependence of these functions indicates that the quarkonium

state H is a bound state of a heavy quark pair. The D[QQ̄(κ)]→H+X(z, {zi}, mQ, µ) is a

generalized fragmentation function defined below for a state consisting of a heavy quark pair

[QQ̄(κ)] to fragment into the same quarkonium state H . Although the total momentum of

the heavy quark pair is the same for both the scattering amplitude and its complex conjugate,

the individual heavy quark momentuain the amplitude do not have to be the same as the

heavy quark momentum in the complex conjugate amplitude, and can be defined as follows,

PQ = (1 + z1)
P

2z
, PQ̄ = (1 − z1)

P

2z
(2)

5

• With corrections that are also 1/p2
T – but added to leading-power gluon fragmentation

• At 1/p4
T expect “non-factoring” corrections linking initial and final states.

• A very similar formalism has been developed in Soft Collinear Effective Theory
(Fleming, Leibovich, Mehen, Rothstein, 2013).

16



IV. Fragmentation Functions and Their Evolution

with pc the total momentum of the pairs in the amplitude and complex conjugate when

they emerge from the hard scattering. We are able to equate these momenta because of the

factorization described in Sec. II.

We derive [QQ̄(κ)]-fragmentation functions by contracting the cut vertices in Eq. (15)

to the part of Feynman diagram (above the dashed line) on the right in Fig. 1. We choose

a frame where the quarkonium momentum is p ∼ P ≈ (P+, 0−, 0⊥) and take the vector

n = (0+, 1, 0⊥). We obtain the fragmentation function for a color octet heavy quark pair

with an axial vector charge, κ = a8, to produce a heavy quarkonium H with fractional

momentum z as,

D[QQ̄(a8)]→HX(z, mQ, µF ) =

(
z2

4P+

) ∑

X

∫ dy−

2π
e−i(P+/z)y−

× 4

N2
c − 1

N2
c −1∑

a,b,c=1

〈0| ψ(0)
γ+γ5

2
ta ψ(0)

[
Φ(A)

n (0, ∞)
]†
ab

|H(P+)X〉

× 〈H(P+)X|
[
Φ(A)

n (y−, ∞)
]
bc

ψ(y−)
γ+γ5

2
tc ψ(y−) |0〉 ,

where all fields are located on the light-cone in the n-direction, with zero “+” and “⊥”

component, and where the trace of spinor indices and quark color indices is implicit. In

(17), the gauge link in the matrix color representation j = F, A (for fundamental and

adjoint, respectively) is given by

Φ(j)
n (y−, ∞) = P exp

[
−ig

∫ ∞

y−
dλ n · A(j)(nλ)

]
, (17)

where P denotes path ordering and A(j) is the gauge field in the representation “j”. Such

gdetailed auge links are a universal feature of fragmentation functions involving colored

partons [39], required for gauge invariance. We shall not review arguments for their presence

here, except to note that in the terminology of Sec. II above they are necessary to match the

fragmentation function to the leading pinch surfaces of the diagrams in covariant gauges.

By removing the two γ5’s in Eq. (17), we have the operator definition of fragmentation

function, D[QQ̄(v8)]→HX(z, mQ, µF ), for a color octet heavy quark pair with a vector charge,

κ = v8, to fragment into a heavy quarkonium H . Proceeding in the same way, from the

cut vertices in Eq. (15) we derive the operator definition of fragmentation functions from a

color singlet heavy quark pair,

14

• Also have:

D[QQ(v 8)]→HX w/out the γ5s, and

D[QQ(a,v 1)]→HX w/out the tas.

• Useful for µF > mQ. Below that, match to NRQCD
(Ma, Qiu, Zhang (2013, 14, 15))

• These distributions are all boost invariant, hence “evolve”:

D(z, µ) ∼ ∑

p

∫ µ dk2
T

kpT
× γp(z) p = 2, 4
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• General evolution mixes LP with NLP,

From Eq. (20) and the fact that dσ̂/d lnµ2
F is one power αs higher than the σ̂, we effec-

tively have

d

d ln µ2
F

Df→H(z, mQ, µF ) =
∑

i

γf→i(z, αs) ⊗ Di→H(z, mQ, µF ) (21)

where
∑

i runs over all parton flavors and

γf→i(z, αs) =
∑

n=1

γ
(n)
f→i(z)

(
αs

2π

)n

(22)

is the perturbative evolution kernel (or sometimes, called splitting functions) for a parton

of flavor f to evolve into another parton of flavor i carrying the momentum fraction z.

The evolution equation in Eq. (21) is the well-known leading power evolution equation, or

DGLAP evolution equation, for the fragmentation functions. The leading power DGLAP

evolution kernels, γf→i(z, αs), are available to next-next-to-leading order in αs.

If we apply the physical condition in Eq. (19) to the factorization formalism in Eq. (4),

we obtain a new set of closed evolution equations including the first subleading power cor-

rections,

d

d ln µ2
F

Df→H(z, mQ, µF ) =
∑

i

γf→i(z, αs) ⊗ Di→H(z, mQ, µF ) (23)

+
1

µ2
F

∑

[QQ̄(κ)]

γf→[QQ̄(κ)](z, αs) ⊗ D[QQ̄(κ)]→H(z, mQ, µF ) ,

d

d lnµ2
F

D[QQ̄(c)]→H(z, mQ, µF ) =
∑

[QQ̄(κ)]

Γ[QQ̄(c)]→[QQ̄(κ)](z, αs) ⊗ D[QQ̄(κ)]→H(z, mQ, µF ) ,

(24)

where the evolution kernels (or splitting functions) are process-independent and can be

calculated perturbatively,

γf→[QQ̄(κ)](z, αs) =
∑

n=2

γ
(n)

f→[QQ̄(κ)]
(z)

(
αs

2π

)n

, (25)

Γ[QQ̄(c)]→[QQ̄(κ)](z, αs) =
∑

n=1

Γ
(n)

[QQ̄(c)]→[QQ̄(κ)]
(z)

(
αs

2π

)n

. (26)

In Eq. (23), the mixing of the high dimensional [QQ̄]-fragmentation functions to the evolution

of low dimensional single parton fragmentation functions is a natural result of the physical

condition in Eq. (19) and is necessary for the fragmentation functions to absorb the power

behaved collinear divergences of partonic cross sections when we extract the short-distance

16

• The matrix element definition of DQQ̄→H+X makes possible computation of (1) split-
ting functions, (2) hard scattering functions, independently of NRQCD. Direct QCD and
SCET approaches agree in most aspects.

• At least as I understand it, however, the nonleading power mixing is not a natural feature
in the SCET-based formalism. This is presumably a choice, but one which may affect
how gluon splitting at intermediate scales Q� µ� mQ is organized.
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V. Conclusions

• All elements are available for a new phenomenology with nonleading powers.

• First expand in pT (factor); then in αs

• Play off the size of matrix elements against power suppression.

• Contact with NRQCD in models of low-scale fragmentation functions for µF ∼ mQ.
(Y.Q. Ma, J.W. Qiu, H. Zhang (2013-15))
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