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Latest quarkonium data from PHENIX:

U+U J/Q suppression from RHIC 2012 Run
Phys. Rev. C 93,034903 (2016)

P(2S) / Y(IS) ratios in p+p, p+Au, p+Al from 2015 Run
* Tracks measured with muon arms + FV 1 X detector

* Improved opening angle resolution separates J/\p from ’
In mass spectrum



LHC energy brings strong charm coalescence

J/W suppression much stronger at 200
GeV than 2.76 TeV for similar energy
density - strong coalescence

At RHIC 39 GeV, 62 GeV, 200 GeV all

show similar suppression
- perhaps strongest at 200 GeV

b Theory B R,,(200 GeV) PRC 84, 054912 (2011)
C 200 Ge Global sys.= = 9.2%
= g: gzx ® R, (62.4 GeV) = PHENIX data/Our estimate
- Global sys.= = 29.4%

A RAA(39 GeV) = PHENIX data/FNAL data
Global sys.= + 19%
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In the model (PRC82, (2010) 064905)
this similarity is due to a balance
between color screening and
coalescence
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Where does coalescence start to dominate!

U+U collisions allow us to go to higher energy density at RHIC

Central U+U collisions should have:
* 15-20% higher energy density than Au+Au collisions
* stronger color screening
* Increased charm production from ~ 25% larger Nc values
* stronger coalescence

J/W production in U+U collisions allows us to explore how the trade-off between
color screening and coalescence evolves as we increase energy density and charm
production



U+U measurements
In RHIC Run 12 we recorded 1.08 B minbias v/snn = 193 GeV U+U events

The p+p reference for Raa is from the RHIC 2008 run
* Phys.Rev. Lett. 107, 142301 (201 1)

The p+p cross section was reduced by 0.964
* Accounts for 200 — 193 GeV energy difference between p+p and U+U data

* derived from PYTHIA p+p simulations

Final J/\p data from the muon arms (1.2 < |y| < 2.2) are now available
* Phys.Rev.C 93,034903 (2016)



U deformation

Need N to get Raa for U+U. Requires a deformed VWoods Saxon distribution of the
nucleons in the U nucleus

_ Lo
1+ exp(lr — R']/a)

p

where

R' = R[1 + B-Y2(0) + B.Y2(6)]

We considered two parameterizations of the deformation of the U nucleus:

Set | (Phys. Lett. B 679,440 (2009)) - “conventional” description of the U deformation
* The mean radius and diffuseness are taken from electron scattering

Set 2 (Phys. Lett. B 749,215 (2015) ) differs in 2 ways:
* Takes into account the finite radius of the nucleon
* Averages over all orientations of axis-of-symmetry
* match average radius and diffuseness to values reported from electron scattering



The U+U Raa

Start with the latest parameter set (2) to calculate Raa
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The U+U Raa is noticeably larger than that for Au+Au



Effect of U deformation model

The parameters for set | are significantly different in their surface diffuseness:

Parameter set 1 set 2
R (fm) 6.81 6.86
a (fm) 0.6 0.42

Ba 0.28 0.265
B4 0.093 0

Larger surface diffuseness for set | results in a less compact nucleus, a larger reaction
cross section by 12%, and N values that are smaller by 6 - 15%

Set 2
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Ratio of dN/dy for U+U and Au+Au

Make the experimental ratio of dN/dy values.
* Has the advantage that it does not rely on N
* However our expectation for its behavior is determined by Ncoli

Compare with curves showing how the ratio would depend on centrality if J/Q

production scaled with
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For2 set |, the ratios are consistent with both curves across centrality, slightly favoring
NZou for most central collisions
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Consistent with a picture in which the increase in charm coalescence becomes more
important than the increased color screening when going from Au+Au to U+U



Preliminary Y’ / |/\b ratios in p+p, p+Al and p+Au



Preliminary Y’ / J/\p ratios in p+p & pt+Au

Run-15 p+p Vs = 200 GeV
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Preliminary Y’ / J/\p ratios in p+p & pt+Au

p+Au, collisions
Pand J/Y = PTU 1.2<|y| <2.2

Fit method and cuts in p+Au identical to p+p analysis

Run-15 p+p Vs = 200 GeV

(50 MeV/c?)

raw counts/
—
(@)
w
TTTT ||

—h
o
N
TTTT

10%

PH-<ENIX
preliminary

22<y<-1.2

3 4 ,
uu” mass (GeV/c?)

Run-15 p+Au |s =200 GeV

(50 MeV/c?)

raw counts/
—
(@)
N

10:

-k
o
w
TTTTT

N
PH--ENIX
preliminary

1.2<y<22
p-going

wu” mass (GeV/c?)

13



Preliminary Y’ / J/\p ratios in p+p & pt+Au

p+Au, collisions

W and /Y = P

Fit method and cuts in p+Au identical to p+p analysis

12 < |y| <22

Stronger suppression evident in Au going
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D’ / J/YP ratios in p+Au and p+Al vs rapidity

Centrality integrated ratio plotted vs rapidity for p+Au and p+Al

Midrapidity point is from d+Au

Strong suppression at backward rapidity, no suppression at forward rapidity
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What causes the differential suppression!?

\s=200 GeV ~—
- ¢prAu PH-“ENIX
preliminary
1.5~  ¢p+Al

—T
o=
'—m—:—.

0.5~ ﬁ +15.6% global uncertainty on

forward/backward rapidity points
+16% global uncertainty on
midrapidity point

> -1 0 1 2
rapidity

0.1 -0.3 0.02 - 0.05 0.004 - 0.01
nuclear crossing time T (fm/c)

16

Can breakup in collisions with
nucleons explain the differential
suppression aty = -1.7?

No - the effect is much too small!

From PRC 87 (2013) 054910 - model of
T dependence fitted to world’s data

Get ~ |% - 7% effectin-1.2 <y <-2.2



What causes the differential suppression!?
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Since we have eliminated breakup, there is no CNM mechanism that could
explain the strong suppression at backward rapidity

e That leaves final state effects

Final state effects:

* Suppression is caused by interactions with produced particles
* So it can occur after the charmonium leaves the target

* i.e. when the meson is fully formed

Ferreiro (PLB 749 (2015) 98)
“Comovers’ in final state
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What causes the differential suppression!?
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Since we have eliminated breakup, there is no CNM mechanism that could
explain the strong suppression at backward rapidity
* That leaves final state effects

Final state effects:
* Suppression is caused by interactions with produced particles
* So it can occur after the charmonium leaves the target
* i.e. when the meson is fully formed
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Adding ALICE data (LHCB very similar)

The comover model does a reasonable

job of describing available P(2S) and /Y

data from both PHENIX and ALICE

But underestimates the differential
suppression in both cases
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Conclusions

U+U J/Q suppression is weaker than that for Au+Au
e Consistent with dominance of coalescence over color screening

Strong indication of final state effects in p+Au W(2S) / W(IS) ratio vs rapidity
* Differential suppression of P (2S) - consistent with comover model

To come (all at v/snn = 200 GeV):

* p+Au Rpa analysis vs centrality for YP(2S) at forward and backward rapidity
* Compare with ALICE forward/backward p+Pb data (arXiv:1603.02816)

* SHe+Au data for \P(2S) at forward and backward rapidity

* p+Au vs pt+Al mass and centrality dependence for )/
* Try to understand > linear onset of suppression with nuclear thickness

for d+Au J/Y production at forward rapidity - centrality measurement
issue or physics?



Backup
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P’ / J/Y ratios in p+Au and

Centrality integrated ratio plotted vs
rapidity for p+Au and p+Al

Midrapidity point is from d+Au

Strong suppression at backward rapidity
No suppression at forward rapidity

Look also at pt dependence for p+Au:
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Fitting the mass spectrum for p+p, p+Au, p+Al i

The fit is a log-likelihood fit to raw data with the following components:
* A properly normalized mixed event combinatorial background
* An exponential function to represent correlated background dimuons
* Peaks to represent the resonances:
* A Crystal Ball function (mass resolution + range straggling in absorber)

* An additional Gaussian (valid pairs involving lower quality tracks)
e Set to 200 MeV in fit, varied to determine systematic

The P(2S) and P(19S) are constrained so: ___ Run-15p+pis-= 200 GeV
e Crystal Ball tails have the same shape, relative §103—— Ergl;sng'!q;?(
- iminary

normalization to the peak for Y(1S), Y(295)
* The P(2S) width is |.15 times the P(1S) width
* From sims (varied to determine systematic)

* The Y(IS) mass floats (moves only |-2%) -

* The Y(2S) - Y(IS) mass difference fixed: 10
* PDG x ratio of P(IS) mass to PDG

* Relative normalization of second gaussian is

the same for P(2S) and P (IS)
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Run-15 p+Au Vs = 200 GeV Run-15 p+Au \'s = 200 GeV
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Experiment:
U+U data at +/snn = 193 GeV from RHIC 2012 run o, comivm 54

MB trigger:

96% efficient
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The PHENIX muon arms

Centrality measured by BBC (3.0 < |n| < 3.9)

|.08 B events recorded
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