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χcJ → e+e−



Motivation and existing results

Br[J/Ψ(1S) → e+e−] = 5.971%

C-odd 

Br[Υ(1S) → e+e−] = 2.38%

C-even 
Kühn, Kaplan, Sa!ani 1979

Denig, Guo, Hahnhart, Nefediev 2014
VDM model

might be detected 
at high-luminosity 
accelerator BES III
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χcJ , X(3872)

Γ[χc2 → e+e−] � 0.014 eV

Γ[X(3872) → e+e−] � 0.03 eV

Γ[χc1 → e+e−] � 0.46 eV

Γ[χc1 → e+e−] � 0.1 eV

generalized VDM model



NRQCD factorisation framework

integrate out hard modes

QCD NRQCD
QED NRQED

Bodwin, Braaten,Lepage 1994

There are 3 well separated scales

essential regions of loop momentum

k0 ∼ m �k ∼ mhard
soft k0 ∼ mv �k ∼ mv

potential �k ∼ mvk0 ∼ mv2

ultrasoft k0 ∼ mv2 �k ∼ mv2

Beneke, Smirnov  1997

eff. Lagrangian + power counting

= systematic approach

v2 � 1mv2 � mv � m



NRQCD factorisation framework

NRQCD
NRQED

pNRQCD
pNRQED

This step can also be 
done systematically

Pineda, Soto 1998,
Brambilla, Pineda, Soto, Vairo 1999,2000

If the soft scale is quite large               one can integrate over 
soft modes and potential gluons 

mv � ΛQCD



Decay amplitude within the NRQCD factorisation

�∆ ∼ mv v2 � 1k

expansion with respect to small

Kühn, Kaplan, Sa!ani 1979
hardsoft

Ah =

�
d3∆Ψ(∆)T [ c̄c(∆) → e+e−] �

��
d3∆Ψ(∆)∆

�
T �[ c̄c(0) → e+e−]



NRQCD factorisation: hard configuration

# of the non-perturbative constants  is reduced 
 to one due to the heavy-quark spin symmetry 

soft part is described within the NRQCD 

χ†
ω /ω = −χ†

ω, /ωψω = ψωHQET fields
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NRQCD factorisation: hard configuration

hard contributions are computed in pQCD

IR-sensitive !

☛ IR divergence indicates that correct factorisation formula 
includes one more term 

Kühn, Kaplan, Sa!ani 1979
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NRQCD factorisation: ultrasoft configuration 

additional contribution:

soft-collinear QEDpQCD

ultrasoftk is

k
l � (E, 0, 0, E)

E � m

pNQCD

collinear lepton



NRQCD factorisation: ultrasoft configuration 

 interaction of collinear leptons and soft photons = the soft Wilson lines

+ + + . . .

H[ c̄c(3S1) → e
+
e
−]Tl[γ

∗
us e

+ → e
+]
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ie
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NRQCD factorisation: ultrasoft configuration 

additional contribution:

soft-collinear QEDpQCD

ultrasoftk is

k
l � (E, 0, 0, E) E � m

pNQCD

O
σ(3S1) = χ†

ωγ
σ
�ψω



NRQCD factorisation: matching

Lem
0 [Bus] =

�
d4x ψ†

ω(x)γ0

�
iω · ∂ +

i∂� · i∂�
2m

�
ψω(x)

Lem
1 = eeQ

�
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em
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∼ v
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O
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Figure 3: The diagrams generated by the T -product (72) in pNRQED. The crossed circle denotes the

vertex of the operator Oγ(
3S1), the dashed lines represent the Wilson lines associated with light-like

directions n and n̄. The small crosses on the dashed lines show all possible attachments of the photon.

Let us consider χc2 as initial state. In this calculation we set P0 = 2m and only keep the relative

momentum �∆. Then the sum of all four diagrams gives

�
e
+
e
−��CγT{O

σ
γ (

3
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em
1 [B
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Computing these diagrams we project the soft quarks fields on the operator O(
3P2) and substitute the

corresponding matrix element which gives the factor �σρχ i
�
O(

3P0)
�
, the coefficient 4 arises from the sum

of the four diagrams shown in Fig.3, the ultrasoft loop integral reads
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This integral coincides with the ultrasoft integral of Eq.(55) obtained within the threshold expansion

approach up to term P 2
0 /4 − m2

which vanishes because we set P0 = 2m. The integral in Eq.(74) is

UV-divergent and we use dimension regularization D = 4− 2ε in order to compute it. The result reads
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, (75)

where µF is the factorization scale. The 1/ε pole is the UV-pole which describes UV-mixing of the

operators Oσ
γ (

3S1) and Oσ
(
3PJ), schematically
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3
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3
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where [O]R on the lhs of Eq.(76) denotes the renormalized operator. Furthermore, ZJ ∼ e2/ε is the

corresponding renormalization constant. Assuming MS-subtraction scheme one finds
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1
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The soft matrix element for the χc1 can be computed in the same way, resulting in
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The hard coefficients C
(J)
γγ are given by

C
(J)
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AJ − Cγ ūnγσ
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γ (
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Complete NRQCD factorisation

NK, Vanderhaeghen 2015



Low energy effective theory for 

 degrees of freedom:   soft photons & mesons:

includes exact and approximates symmetries of NRQCD 
in a systematic way using 1/m expansion

 soft photon cannot resolve the quark degrees of freedom

NRQCD low energy effective theory

low energy effective theory

J/Ψ,χcJ ,π, . . .

χcJ J/Ψ

�0| Oσ(3S1)Y
†
nYn̄ |χcJ�



Effective Lagrangian 

Leff
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2
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Low energy effective theory 

operator matching
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Effective Lagrangian 

Soft photon sector

corresponding eff. coupling fγγ

Eγ ∼ Λ

χcJ → l+l− + γs

γs

UV divergent, scaleless and can be understood as the QED 
renormalization of the contact term in effective theory 

contact term

in the following we
 assume that        is small

this term can be 
associated with  
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+ Cγfγγ



The results for widths

matching scale
Eichten, Quigg 1995
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Numerical estimates

Table 1: Numerical results for the decay widths for different values of the factorization scale µ0.
µ0,MeV Γ[χc1 → e−e+], eV Γ[χc2 → e−e+], eV

300 0.060s + 0.009hs + 0.023h = 0.091 0.036s + 0.020hs + 0.016h = 0.072
400 0.063s + 0.013hs + 0.011h = 0.087 0.038s + 0.017hs + 0.013h = 0.068
500 0.066s + 0.011hs + 0.004h = 0.082 0.040s + 0.015hs + 0.010h = 0.065

denote contributions from the soft and hard photon terms and hs corresponds to the interference of these
contributions. In all cases the largest numerical contribution is provided by the ultrasoft matrix element.
This contribution is relatively large and it weakly depends on the factorization scale µ0. Our estimates for
Γ[χc1 → e−e+] is approximately factor 5 smaller then the estimate in Ref. [1] and in a good agreement
with the estimate in Ref. [2]. For Γ[χc2 → e−e+] our result is five times larger than one obtained in
Ref. [1].

From Table 1 one can observe that the interference of the hard and ultrasoft contributions is numeri-
cally large for χc2 width and relatively small for χc1. This can be explained as following. The imaginary
part of h(µ0) is numerically much larger than the real one, see Eq.(99). Further, the hard coefficient func-

tion C(1)
γγ is real and therefore corresponding interference in the width depends only from the real part of

h(µ0). The imaginary part of C(2)
γγ is not zero and therefore in this case the interference depends on the

large imaginary part h(µ0) and turns out numerically large. This observation allows one to conclude that
the decay width χc2 is quite sensitive to the relative sign of parameters R10 and R�

21. In our estimate we
used that these parameters has the same sign, see Eq.(105). However if they have opposite sign then the
interference contribution is negative and this reduces the numerical value of the Γ[χc2 → e−e+] by factor
2.

In Ref. [1] it was shown that unitarity and analyticity allows one to constrain the minimal values of
decay widths

Γ[χc1 → e−e+] ≥ 3

2

α

k0
Γ[J/ψ → e−e+]Γ[χc1 → γJ/ψ] ≈ 0.046 eV, (110)

Γ[χc2 → e−e+] ≥




�

α2

9
Γ[χc2 → γγ] +

�
9α2

20k0
Γ[χc2 → γJ/ψ]Γ[J/ψ → e−e+]




2

≈ 0.037 eV. (111)

In the presented formalism these constrains are always satisfied because the soft contribution has a
cut which yields the imaginary part required for the saturation of the bounds in Eqs.(110) and (111).
Therefore all our estimates shown in Table I are in agreement with these inequalities. As one can see
from Table I the hard two-photon contribution is always smaller than the limiting value in both cases.
The same observation was also made in Ref. [1]. This clearly indicates that the soft photon configuration
provides a critically important contribution to these decay amplitudes.

The derived approach can also be used for a description of leptonic decays of bottonium states χbJ .
These particles have almost the same branching fractions for χbJ → Υ(1S)γ decay, see e.g. [22], but at
present the widths of these states are not yet measured. Therefore, we cannot extract the decay coupling

f (b)
γ using experimental data. Instead, we use the estimates for the corresponding widths obtained in the
model with a Cornell potential [25]. The corresponding values can be found in Ref. [26] and read

Γ[χb1] = 27.8keV, Γ[χb2] = 31.6keV. (112)

This gives for the dimensionless coupling in the HHχPT Lagrangian

f (b)
γ � 9.4. (113)

On the other hand, the width of Υ(2S) and branching fractions Υ(2S) → χbJγ are known [22]:

ΓΓ[Υ(2S)] = 32keV, Br[Υ(2S)] → χb1γ] = 0.06, Br[Υ(2S)] → χb2γ] = 0.07. (114)

Using this values we obtain

f �(b)
γ � −16. (115)
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Comparison with other estimates:

Denig, Guo, Hahnhart, Nefediev 2014 VDM model Γ[χc1 → e+e−] � 0.1 eV

Kühn, Kaplan, Sa!ani 1979 Γ[χc2 → e+e−] � 0.014 eV

Γ[χc1 → e+e−] � 0.46 eV
generalized VDM model

Czyz, Kühn, Tracz , 2016   phenom. model (VDM?)

NK, Vanderhaeghen 2015

Γ[χc1 → e+e−] � 0.078 eV

Γ[χc2 → e+e−] � 1.35 eV

4

e+

e−

J/ψ

ef

i
MJ/ψ

FIG. 4: Diagram for decay width Γ(J/ψ → e+e−) .

The Rpeak value at the peak of the cross section is
given by [6]

Rpeak =
σ(0)
res

σpt
=

Γee

∆

9

4α2

√
2M

Γhad

Γtot
NZ (27)

where Γee,Γhad and Γtot denote the width of the reso-
nance into e+e−, into hadrons and the total width, re-
spectively. ∆ stands for the machine energy resolution
and NZ is slightly model dependent factor around 0.7.
Taking for illustration values for Γee between 0.1 eV and
0.5 eV, Γhad/Γtot = 0.66 and∆ = 4MeV , one finds Rpeak

between 2.15·10−3 and 1.075·10−2.
Alternatively, one may focus on the decay channel

e+e− → χci → γJ/ψ(→ µ+µ−). For the 1++ state the
prediction is also affected by the amplitude due to the
neutral current [1, 2, 5] . To identify the interference
term, the neutral current amplitude has to be decom-
posed into the form (Ve+Ae)AC , and it is the interference
between the AeAC term from the neutral current and the
dispersive part (real part) of the electromagnetic ampli-
tude which affects the rate. Specifically one obtains:

Γ(χc1 → e+e−) =
Mχc1

3π

[

|g1|2

4
(28)

+
aGF√
2mQ2

Re(g1)

+
a2G2

F

mQ4

(

1− 4 sin2 θW + 8 sin4 θW

)]

,

where GF is the Fermi constant and θW is the weak mix-
ing angle. The function g1 comes from performing loop
integrals (see Appendix A).
The mass of the c quark, the derivative of the wave func-
tion at the origin (in fact a) and the parameter aJ have
been extracted from the measured decay widths [7] of
χc1,2 to γγ and to γJ/ψ, using formulae (23), (24), (25).
The obtained parameters, the square of the derivative
of the wave function |φ′

(0)|2, the binding energies cal-
culated according to bi = 2m − Mi, and the parameter
aJ are presented in Table II together with the calculated
decay widths.
The electronic widths have been calculated using the

diagrams from Figure 5. For χc1 we have, in addition,
also included the contribution coming from the neutral
current Eq. (29). The functions gi, which come from

a[GeV5/2] |φ
′

(0)|2 [GeV5] m [GeV] b1 [GeV] b2[GeV] aJ

0.073 0.04 1.7 -0.204 -0.249 0.11

widths [MeV] χc1 χc2

Γ(χ → γγ)th - 5.28819 · 10−4

Γ(χ → J/ψγ)th 2.84760 · 10−1 3.70560 · 10−1

Γ(χ → γγ)exp - 5.3(3) · 10−4

Γ(χ → J/ψγ)exp 2.8(2) · 10−1 3.7(3) · 10−1

TABLE II: Parameters and theoretical (th) (this paper), and
experimental (exp) [7] values of Γ(χ1,2 → γγ, γJ/ψ).

e−

l−

e+
l+

χc

(a)

J/ψ

e−

l−

e+
l+

χc
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FIG. 5: Diagrams for decay widths Γ(χc0,1,2 → e+e−).

performing loop integrals can be divided into two parts:

gi = giγγ + giJ/ψγ
, (29)

coming from Fig.5a and Fig.5b. The formulae for these
functions can be found in Appendix A. In Table III we
present the values of the electronic widths within the
adopted model, where giγγ is the contribution from the
diagram with two photons, giJ/ψγ

the contribution from
the diagram which contains J/ψγ. For χc1 we include
the sum of electromagnetic and neutral current contribu-
tion (QED + Z0). The obtained values of the electronic
widths are quite comparable to the ones obtained within
other models [2–5].

III. THE PROCESS e+e− → χci → γJ/ψ(→ µ+µ−)

With the couplings extracted as described above one
can predict the χc1 and χc2 production cross sections in
e+e− annihilation. As these states are not stable one can
observe only their decay products and an easy to identify
final state has to be chosen. An obvious choice is the
reaction e+e− → χc → γJ/ψ(→ µ+µ−). The Feynman
diagram describing this process is given in Fig.1a. In
Fig.1b we present the diagram for the similar process,

γγ + J/ψγ γγ J/ψγ QED+Z0

Γ(χc1 → e+e−) [eV] 0.078 0.073 0.003 0.071

Γ(χc2 → e+e−) [eV] 1.35 0.032 0.975 -

TABLE III: Electronic widths for χc1 and χc2 . See text for
details
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FIG. 4: Diagram for decay width Γ(J/ψ → e+e−) .

The Rpeak value at the peak of the cross section is
given by [6]

Rpeak =
σ(0)
res

σpt
=

Γee

∆

9

4α2

√
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Γtot
NZ (27)

where Γee,Γhad and Γtot denote the width of the reso-
nance into e+e−, into hadrons and the total width, re-
spectively. ∆ stands for the machine energy resolution
and NZ is slightly model dependent factor around 0.7.
Taking for illustration values for Γee between 0.1 eV and
0.5 eV, Γhad/Γtot = 0.66 and∆ = 4MeV , one finds Rpeak

between 2.15·10−3 and 1.075·10−2.
Alternatively, one may focus on the decay channel

e+e− → χci → γJ/ψ(→ µ+µ−). For the 1++ state the
prediction is also affected by the amplitude due to the
neutral current [1, 2, 5] . To identify the interference
term, the neutral current amplitude has to be decom-
posed into the form (Ve+Ae)AC , and it is the interference
between the AeAC term from the neutral current and the
dispersive part (real part) of the electromagnetic ampli-
tude which affects the rate. Specifically one obtains:

Γ(χc1 → e+e−) =
Mχc1

3π

[

|g1|2

4
(28)

+
aGF√
2mQ2

Re(g1)

+
a2G2

F

mQ4

(

1− 4 sin2 θW + 8 sin4 θW

)]

,

where GF is the Fermi constant and θW is the weak mix-
ing angle. The function g1 comes from performing loop
integrals (see Appendix A).
The mass of the c quark, the derivative of the wave func-
tion at the origin (in fact a) and the parameter aJ have
been extracted from the measured decay widths [7] of
χc1,2 to γγ and to γJ/ψ, using formulae (23), (24), (25).
The obtained parameters, the square of the derivative
of the wave function |φ′

(0)|2, the binding energies cal-
culated according to bi = 2m − Mi, and the parameter
aJ are presented in Table II together with the calculated
decay widths.
The electronic widths have been calculated using the

diagrams from Figure 5. For χc1 we have, in addition,
also included the contribution coming from the neutral
current Eq. (29). The functions gi, which come from

a[GeV5/2] |φ
′

(0)|2 [GeV5] m [GeV] b1 [GeV] b2[GeV] aJ

0.073 0.04 1.7 -0.204 -0.249 0.11

widths [MeV] χc1 χc2

Γ(χ → γγ)th - 5.28819 · 10−4

Γ(χ → J/ψγ)th 2.84760 · 10−1 3.70560 · 10−1

Γ(χ → γγ)exp - 5.3(3) · 10−4

Γ(χ → J/ψγ)exp 2.8(2) · 10−1 3.7(3) · 10−1

TABLE II: Parameters and theoretical (th) (this paper), and
experimental (exp) [7] values of Γ(χ1,2 → γγ, γJ/ψ).
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performing loop integrals can be divided into two parts:

gi = giγγ + giJ/ψγ
, (29)

coming from Fig.5a and Fig.5b. The formulae for these
functions can be found in Appendix A. In Table III we
present the values of the electronic widths within the
adopted model, where giγγ is the contribution from the
diagram with two photons, giJ/ψγ

the contribution from
the diagram which contains J/ψγ. For χc1 we include
the sum of electromagnetic and neutral current contribu-
tion (QED + Z0). The obtained values of the electronic
widths are quite comparable to the ones obtained within
other models [2–5].

III. THE PROCESS e+e− → χci → γJ/ψ(→ µ+µ−)

With the couplings extracted as described above one
can predict the χc1 and χc2 production cross sections in
e+e− annihilation. As these states are not stable one can
observe only their decay products and an easy to identify
final state has to be chosen. An obvious choice is the
reaction e+e− → χc → γJ/ψ(→ µ+µ−). The Feynman
diagram describing this process is given in Fig.1a. In
Fig.1b we present the diagram for the similar process,

γγ + J/ψγ γγ J/ψγ QED+Z0

Γ(χc1 → e+e−) [eV] 0.078 0.073 0.003 0.071

Γ(χc2 → e+e−) [eV] 1.35 0.032 0.975 -

TABLE III: Electronic widths for χc1 and χc2 . See text for
details
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Summary

The decay rate                  is computed using effective filed 
theory framework

There are two different contributions: hard (both photons 
are hard) and ultrasoft (one photon is ultrasoft) which can 
be described unambiguiosly

Nonperturbative contributions are presented in terms of matrix 
elements in NRQCD. All these matrix elements are known and 
related to the radial wave functions at zero.

Ultrasoft contribution can be computed within the low energy 
effective theory  framework (em sector of HHχPT)

Higher order corrections in hard term are of order v2 and can 
not be very large numerically (expectation)

Γ[χcJ → e+e−]
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