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Plan of my talk
• Theoretical framework (potential-NRQCD) 

• Current status of perturbative calculations 

• Determination of         and 

• Uncertainty estimation 

• summary
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construction of the potential-NRQCD
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full QCD

NRQCD

pNRQCD

integrating out hard contribution 
(effects are encoded in Wilson coefficients)

integrating out soft contribution 
(potential is generated)

remaining degrees of freedom (DOF): heavy quark (P) ,(US) 
gluon (US) 
light quarks (US)

hard (H) 
 
soft (S) 
 
potential (p) 

ultra soft (US)
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[Pineda, Soto, ‘98]
[Brambilla, Pineda, Soto, Vairo, ‘00]
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our current knowledge of the Coulomb potential 
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our current knowledge of binding energy
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our current knowledge of binding energy
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our current knowledge of binding energy
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our current knowledge of binding energy
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pole mass scheme

Short-distance masses lead good convergence. 
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pole mass scheme MS mass scheme

Short-distance masses lead good convergence. 
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our current knowledge of pole-MS mass relation
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gluon correction only

gluon 
massless quark

[Marquard, Smirnov, Smirnov,  
Steinhauser, ’15]

[Tarrach, ’81]

gluon 
massless quark 
massive quark

[Gray, Broadhurst, Grafe, Schliche, ’90]

gluon 
massless quark

[Chetyrkin, Steinhauser, ‘99] 
[Melnikov, Ritbergen ’99]

massive quark
[Bekavac, Grozin, Seidel, Steinhauser, ’07]
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bottomonium spectrum in the perturbative QCD at NNNLO

private calculation based on [Kiyo, Sumino ’14] 
The finite-charm-mass correction is not included. 
Theoretical uncertainty is estimated by NNLO-NNNLO.
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bottomonium spectrum in the perturbative QCD at NNNLO

These splittings are not well reproduced 
within our approach yet. 

(a way to improve them, cf. [Recksiegel Sumino ’03, ’04])

private calculation based on [Kiyo, Sumino ’14] 
The finite-charm-mass correction is not included. 
Theoretical uncertainty is estimated by NNLO-NNNLO.
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bottomonium spectrum in the perturbative QCD at NNNLO

private calculation based on [Kiyo, Sumino ’14] 
The finite-charm-mass correction is not included. 
Theoretical uncertainty is estimated by NNLO-NNNLO.

We focus on these low-lying states.
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We focus on the lowest-lying states (                  ) 
because the excited states are  

more sensitive to higher order corrections.
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We use the Coulomb wave function 
as the leading order approximation, 
but it is not so effective in the excited states. 

Bohr radius  
of 1S state
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LO

NLO NNLO
NNNLO

Convergence and scale independence  
become better as we go higher order.

10
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Estimation of higher order corrections  
by the scale dependence
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Formally, scale dependence disappears  
when all order corrections are included.
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NNNLO

Uncertainty estimation by scale variation
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We adopt the value at minimal sensitivity scale     , 
and examine scale dependence with                       .

µX

µX/2 < µ < 2µX
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LO

NLO NNLO
NNNLO

Uncertainty estimation by NNLO-NNNLO
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We adopt the difference between NNLO and NNNLO.
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result (bottom mass)

14
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finite-charm-mass correction
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We adopt the scheme in which  
most of the bottomonium mass is written  
in the four massless quark theory  
and the finite-charm-mass correction is added to them.

Cancellation between the quark self energy correction  
and binding energy correction is observed.
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Figure 2: Determination of mc. Horizontal (vertical) axis represents mc (mass of charmonium
1S state). Horizontal bands denote the experimental data with errors. Diagonal bands show
the perturbative QCD predictions with errors as functions of mc. Determined mc with error
bars are shown below the plot. For comparison, the PDG value is also shown.

and r ∼ 1.5 GeV−1 (although it is sensitive to the values chosen for ΛQCD and r). As
stated, in a purely perturbative prediction, this renormalon uncertainty is the substitute
for a non-perturbative matrix element in OPE of EFT.

To summarize our results, we obtain

mc(J/ψ(1S)) = 1266± 2 (d3) ± 4 (αs) ± 27 (h.o.) MeV , (13)

mc(ηc(1S)) = 1226± 2 (d3) ± 4 (αs) ± 19 (h.o.) MeV . (14)

Both values are mutually consistent within the estimated errors. By taking the average
of the above two estimates, we obtain

mave
c = 1246± 2 (d3) ± 4 (αs) ± 23 (h.o.) MeV . (15)

It is consistent with the current PDG value mc = 1275± 25 MeV [1]. See Fig. 2.

Determination of b-quark mass from Υ(1S) and ηb(1S)

In the limit where we neglect masses of quarks in internal loops, the formula for the
bottomonium energy level is the same as that for the charmonium, except that we set
nf = 4. It is known, however, that effects of the c-quark mass is important in the
predictions of the bottomonium energy levels. Presently the corrections by non-zero
mc effects are known up to O(ε3). These effects are included in our predictions in the
following way.

Mbb̄ = 2mpole
b + Ebin, bb̄ (16)

5

result (charm mass)
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Summary
• We determined        and          from charmonium and 

bottomonium 1S states in the NNNLO perturbative QCD. 

• The theoretical uncertainty is estimated  in a systematic way.

17

the bottomonium 1S states [9], and to use the effective 3-flavor coupling may not be
natural.

By incorporating the charm-mass effects, qualitatively the potential energy V (r)
between b and b̄ becomes steeper (interquark force becomes stronger) at large r ( >∼ m−1

c ),
due to the decoupling of the c-quark in the running of αs [31]. This pushes up the energy
levels of the bottomonium for the same input mb. As a result, the determined mb’s are
reduced compared to the mc → 0 case [22] by about 8 MeV.

We estimate uncertainties in the determination of mb in the same way as in the
charmonium case. (The errors of the experimental data are negligibly small.)
(i) Uncertainty due to uncertainty of d3 is ±2 MeV.
(ii) Uncertainty due to uncertainty of αs(MZ) is ±6 MeV.
(iii) Uncertainty by higher-order corrections. (a) By changing µ to twice of the value of
the minimal sensitivity scale, mb determined from either Υ(1S) or ηb(1S) varies by about
10 MeV. (b) The differences in the determined mb on the minimal sensitivity scales up
to NNLO and NNNLO give 21 MeV and 18 MeV, respectively, for Υ(1S) and ηb(1S). (c)
One half of the last known terms of eqs. (26) and (27) are both about 3 MeV. We take as
our estimates the maximal values of (a)–(c), namely, 21 MeV and 18 MeV, respectively,
for Υ(1S) and ηb(1S). Twice of these values are roughly of the same order of magnitude
as (or slightly larger than) Λ3

QCDr
2, in the case ΛQCD ∼ 300 MeV and r ∼ 1 GeV−1.

In addition, we estimate uncertainties of the non-zero charm mass corrections.
(iv) Uncertainty of non-zero mc effects: (a) The charm mass corrections at O(ε2) and
O(ε3) shown in Fig. 4(a) are around 10 MeV at the minimal sensitivity scales µ ∼ 5–
6 GeV of Mbb̄. We take the average of these two terms, which translates to about 5 MeV
for the determined mb. (b) We take the difference of the determined mb by using the
4-flavor coupling and the 3-flavor coupling. This gives about 3 MeV for either Υ(1S) or
ηb(1S). We take the maximal value of (a) and (b), namely 5 MeV, as our estimate. This
estimate of uncertainty from non-zero mc is consistent with those of previous studies
[2, 3] using the non-relativistic sum rule.

To summarize our results, we obtain

mb(Υ(1S)) = 4207± 2 (d3) ± 6 (αs) ± 21 (h.o.)± 5 (mc) MeV , (28)

mb(ηb(1S)) = 4187± 2 (d3) ± 6 (αs) ± 18 (h.o.)± 5 (mc) MeV . (29)

Both values are mutually consistent within the estimated errors. By taking the average
of the above two estimates, we obtain

mave
b = 4197± 2 (d3) ± 6 (αs) ± 20 (h.o.)± 5 (mc) MeV . (30)

It is consistent with the current PDG value mb = 4.18± 0.03 GeV. (See Fig. 5.)

Conclusions and discussion

We determined the c- and b-quark MS masses, by direct comparisons of the experimental
data for the masses of the individual heavy quarkonium 1S states with the predictions of
perturbative QCD. The predictions combine the state-of-the-art computational results,
which are at the NNNLO level, and show stability and convergence expected for legiti-
mate perturbative predictions. The obtained values of each mass from the different spin

9
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Figure 2: Determination of mc. Horizontal (vertical) axis represents mc (mass of charmonium
1S state). Horizontal bands denote the experimental data with errors. Diagonal bands show
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bars are shown below the plot. For comparison, the PDG value is also shown.
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for a non-perturbative matrix element in OPE of EFT.

To summarize our results, we obtain
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Determination of b-quark mass from Υ(1S) and ηb(1S)

In the limit where we neglect masses of quarks in internal loops, the formula for the
bottomonium energy level is the same as that for the charmonium, except that we set
nf = 4. It is known, however, that effects of the c-quark mass is important in the
predictions of the bottomonium energy levels. Presently the corrections by non-zero
mc effects are known up to O(ε3). These effects are included in our predictions in the
following way.
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Updated value

18

↵s(mZ) = 0.1185± 0.0006 ! 0.1181± 0.0013
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Why infrared effects cancel? (intuitive view)

19
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Bottomonium bound state receives 
UV (short-distance) effects.

Bottomonium is color singlet state, 
so gluons of long wave length 
decouple from the bottomonium. 
Thus IR (long-distance) effects 
on the bottomonium decreases.


