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Study of four-quark states

Motivation

• A number of mesons observed in particle detectors (LHCb, Belle) is not well
understood.

• E.g. charged charmonium- and bottomonium-like states (Zc
± and Zb

±)

• They include bb̄ or cc̄ , but are also charged: must be 4-quark states

possible tetraquark structures
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Meson spectroscopy on the lattice

The static-light approach

• Computation of 4-quark states very difficult

• If 2 quarks are heavy and 2 quarks are light: Treat degrees of freedom
independently in two steps (Born-Oppenheimer approximation [M. Born, R.

Oppenheimer, “Zur Quantentheorie der Molekeln,” Ann.Phys. 389, Nr. 20, 1927]).

1 Lattice computation of the potential of two static quarks in the presence of
two light quarks, i.e. potential can be interpreted as the potential between two
B mesons

2 Solve Schrödinger’s equation to check whether potentials are sufficiently
attractive to form a bound state.

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 2 / 18



Meson spectroscopy on the lattice

The static-light approach

• Computation of 4-quark states very difficult

• If 2 quarks are heavy and 2 quarks are light: Treat degrees of freedom
independently in two steps (Born-Oppenheimer approximation [M. Born, R.

Oppenheimer, “Zur Quantentheorie der Molekeln,” Ann.Phys. 389, Nr. 20, 1927]).

1 Lattice computation of the potential of two static quarks in the presence of
two light quarks, i.e. potential can be interpreted as the potential between two
B mesons

2 Solve Schrödinger’s equation to check whether potentials are sufficiently
attractive to form a bound state.

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 2 / 18



Meson spectroscopy on the lattice

The static-light approach

• Computation of 4-quark states very difficult

• If 2 quarks are heavy and 2 quarks are light: Treat degrees of freedom
independently in two steps (Born-Oppenheimer approximation [M. Born, R.

Oppenheimer, “Zur Quantentheorie der Molekeln,” Ann.Phys. 389, Nr. 20, 1927]).

1 Lattice computation of the potential of two static quarks in the presence of
two light quarks, i.e. potential can be interpreted as the potential between two
B mesons

2 Solve Schrödinger’s equation to check whether potentials are sufficiently
attractive to form a bound state.

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 2 / 18



Meson spectroscopy on the lattice

The static-light approach

• Computation of 4-quark states very difficult

• If 2 quarks are heavy and 2 quarks are light: Treat degrees of freedom
independently in two steps (Born-Oppenheimer approximation [M. Born, R.

Oppenheimer, “Zur Quantentheorie der Molekeln,” Ann.Phys. 389, Nr. 20, 1927]).

1 Lattice computation of the potential of two static quarks in the presence of
two light quarks, i.e. potential can be interpreted as the potential between two
B mesons

2 Solve Schrödinger’s equation to check whether potentials are sufficiently
attractive to form a bound state.

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 2 / 18



Meson spectroscopy on the lattice

Hadron spectroscopy I

• A hadron is described by its isospin (flavor content) I , total angular
momentum J, parity P and charge conjugation C .

• If two static quarks are involved, the distance r between them also
characterizes the hadronic system.

• Application of a suitable operator O on the vacuum generates field
excitations which are similar to the hadron of interest.

• Here: Use two static quarks and two quarks of finite mass
• Static quarks: no spin, no contribution to total angular momentum and isospin
• BB: Q̄Q̄qq with Q = b and q ∈ {u, d , s, c}

OBB = (CΓ)AB(CΓ̃)CDQ̄
a
C (~x , t)q(1)a

A(~x , t)︸ ︷︷ ︸
B meson at ~x

Q̄b
D(~y , t)q(2)b

B(~y , t)︸ ︷︷ ︸
B meson at ~y
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Meson spectroscopy on the lattice

Hadron spectroscopy II

• Obtain the correlation function in time for each separation r = |~x − ~y | of the
static quarks via

C (t) = 〈Ω| O†(t)O(0) |Ω〉
Requires O(months) of computing time on high performance computers.

• For large t one finds the potential V (r) of the hadronic state O(t):

lim
t→∞

〈Ω| O†(t)O(0) |Ω〉 ∝ exp(−V (r)t)

• Get a value of the potential for each quark separation r and obtain the
complete potential:
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BB systems

BB systems in the static-light approach
P. Bicudo, K. Cichy, A. Peters, B. Wagenbach and M. Wagner, Phys. Rev. D 92 (2015) no.1,
014507 doi:10.1103/PhysRevD.92.014507 [arXiv:1505.00613 [hep-lat]].

P. Bicudo, K. Cichy, A. Peters and M. Wagner, Phys. Rev. D 93 (2016) no.3, 034501
doi:10.1103/PhysRevD.93.034501 [arXiv:1510.03441 [hep-lat]].

related to previous papers:

C. Michael et al. [UKQCD Collaboration], Phys. Rev. D 60 (1999) 054012
doi:10.1103/PhysRevD.60.054012 [hep-lat/9901007].

M. S. Cook and H. R. Fiebig, hep-lat/0210054.

T. Doi, T. T. Takahashi and H. Suganuma, AIP Conf. Proc. 842 (2006) 246
doi:10.1063/1.2220239 [hep-lat/0601008].

W. Detmold, K. Orginos and M. J. Savage, Phys. Rev. D 76 (2007) 114503
doi:10.1103/PhysRevD.76.114503 [hep-lat/0703009 [HEP-LAT]].

M. Wagner [ETM and Y Collaborations], PoS LATTICE 2010 (2010) 162 [arXiv:1008.1538
[hep-lat]].

G. Bali et al. [QCDSF Collaboration], PoS LATTICE 2010 (2010) 142 [arXiv:1011.0571

[hep-lat]].
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BB systems

The BB four-quark operator

OBB = (CΓ)AB(CΓ̃)CDQ̄
a
C (~x , t)q(1)a

A(~x , t)︸ ︷︷ ︸
B meson at ~x

Q̄b
D(~y , t)q(2)b

B(~y , t)︸ ︷︷ ︸
B meson at ~y

• use of gauge configurations generated by the ETMC corresponding to 3
different pion masses

• different choice of Γ corresponds to different potentials (different couplings of
B, B∗, B∗0 and B∗1 )

2 attractive ground state
channels:

• spin scalar isosinglet with
I (JP) = 0(1+)

• spin vector isotriplet
I (JP) ∈
{0(1+), 1(1+), 1(2+)}
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BB systems

Fit an ansatz to the potentials:

V (r) = − α

r︸︷︷︸
Coulomb−like

e−( r
d )2︸ ︷︷ ︸

colour screening
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BB systems

Solve Schrödinger’s equation

• solve Schrödinger’s equation for the radial component of the two b̄ quarks::(
− 1

2µ

d2

dr2
+ V (r)

)
R(r) = EBR(r) , ψ(r) = R(r)/r

• lowest eigenvalue EB < 0 binding (4-quark bound state), EB > 0 no binding
(2 mesons)

Perform a large number of fits varying...

• the temporal separation at which the lattice potential is read off the
correlation function

• the range at which the fit to the potential is performed

Binding for light isosinglet channel only!
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BB systems

Most promising channel for a bound state: scalar udb̄b̄

remember:

V (r) = −α
r
e−( r

d )2

Extrapolation to
the physical quark
mass: Binding
increases

For the BB four-quark state with quantum numbers I (JP) = 0(1+) we find
EB = −90+43

−36 MeV at the physical point
−→ binding with more than 2σ confidence level
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BB∗ systems with NRQCD

Study of BB∗ systems by means of
NRQCD

in collaboration with

Stefan Meinel and Luka Leskovec

Work in progress.
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BB∗ systems with NRQCD

The I (JP) = 0(1+) udb̄b̄ state with NRQCD

• strong evidence for a udb̄b̄ bound state in the I (JP) = 0(1+) channel from
static-light approach

• to be confirmed with b̄-quarks of finite mass instead of static quarks
⇒ search for a bound state with nonrelativistic QCD (NRQCD)

• positions of b̄ quarks not fixed
⇒ computation of V (r) not possible
⇒ but direct computation of mass of lowest BB∗ state in I (JP) = 0(1+)
channel possible

• nf = 2 + 1 dynamical sea quarks, mπ = 336 MeV [arXiv:1409.0497]

The NRQCD BB∗ correlator:

∑
~x1,~x2,~x′1,~x

′
2

ei~p1(~x1−~x′1)ei~p2(~x2−~x′2)δ~x1,~x2
δ~x′1,~x′2(

b̄γ5d(~x1)b̄γiu(~x2)− b̄γ5u(~x1)b̄γid(~x2)
) (

d̄γ5b(~x ′1)ūγib(~x ′2)− ūγ5b(~x ′1)d̄γib(~x ′2)
)
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⇒ search for a bound state with nonrelativistic QCD (NRQCD)

• positions of b̄ quarks not fixed
⇒ computation of V (r) not possible
⇒ but direct computation of mass of lowest BB∗ state in I (JP) = 0(1+)
channel possible

• nf = 2 + 1 dynamical sea quarks, mπ = 336 MeV [arXiv:1409.0497]

The NRQCD BB∗ correlator:

∑
~x1,~x2,~x′1,~x

′
2

ei~p1(~x1−~x′1)ei~p2(~x2−~x′2)δ~x1,~x2
δ~x′1,~x′2(

b̄γ5d(~x1)b̄γiu(~x2)− b̄γ5u(~x1)b̄γid(~x2)
) (

d̄γ5b(~x ′1)ūγib(~x ′2)− ūγ5b(~x ′1)d̄γib(~x ′2)
)
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BB∗ systems with NRQCD

The I (JP) = 0(1+) udb̄b̄ state with NRQCD - preliminary
results

• To get a clear signal in a first step we use unphysically heavy b̄ quarks

• compute masses of B, B∗ and BB∗

• if mBB∗ < mB + mB∗ : bound state in I (JP) = 0(1+) channel

mBB∗ − (mB + mB∗) ≈ −100
MeV, i.e. strong indication that
mass of the four-quark udb̄b̄ is
smaller than the sum of B and
B∗

Qualitative confirmation of static-light result
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BB̄ systems

BB̄ systems in the static-light approach

A. Peters, P. Bicudo, K. Cichy and M. Wagner, “Investigation of BB̄ four-quark
systems using lattice QCD,” arXiv:1602.07621 [hep-lat].

Work in progress.
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BB̄ systems

The BB̄ system - Additional problem

There is a larger variety of different structures for the experimentally relevant case
of I (JP) = 1(1+) (i.e. Z+

b ):

• A ūdb̄b state , i.e.

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 14 / 18



BB̄ systems

The BB̄ system - Additional problem

There is a larger variety of different structures for the experimentally relevant case
of I (JP) = 1(1+) (i.e. Z+

b ):
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a mesonic molecule

B B

or

a diquark-antidiquark

diquark
  anti-
diquark

or

a B meson and a far separated B̄ meson
B B

as for the BB case

• A bottomonium state and a far separated π+, i.e.

QQ̄ + π
QQ pion
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BB̄ systems

To separate these structures, we ...

1 implement a correlation matrix

Cjk(t) = 〈Ω| O†j (t)Ok(0) |Ω〉 ≈
large t

A0
jk exp (−V0(r)t)+A1

jk exp (−V1(r)t)+. . .

O0 ≡ OBB̄ = ΓAB Γ̃CDQ̄
a
C (~x)qaA(~x)q̄bB(~y)Qb

D(~y)

O1 ≡ OQQ̄+π = Γ̃ABQ̄
a
A(~x)Uab(~x , t;~y , t)Qb

B(~y)
∑
~z

q̄cC (~z) (γ5)CD qcD(~z)

2 extract the potentials with the Generalized Eigenvalue Problem (GEP).

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 15 / 18



BB̄ systems

To separate these structures, we ...

1 implement a correlation matrix

Cjk(t) = 〈Ω| O†j (t)Ok(0) |Ω〉 ≈
large t

A0
jk exp (−V0(r)t)+A1

jk exp (−V1(r)t)+. . .

O0 ≡ OBB̄ = ΓAB Γ̃CDQ̄
a
C (~x)qaA(~x)q̄bB(~y)Qb

D(~y)

O1 ≡ OQQ̄+π = Γ̃ABQ̄
a
A(~x)Uab(~x , t;~y , t)Qb

B(~y)
∑
~z

q̄cC (~z) (γ5)CD qcD(~z)

2 extract the potentials with the Generalized Eigenvalue Problem (GEP).

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 15 / 18



BB̄ systems

To separate these structures, we ...

1 implement a correlation matrix

Cjk(t) = 〈Ω| O†j (t)Ok(0) |Ω〉 ≈
large t

A0
jk exp (−V0(r)t)+A1

jk exp (−V1(r)t)+. . .

O0 ≡ OBB̄ = ΓAB Γ̃CDQ̄
a
C (~x)qaA(~x)q̄bB(~y)Qb

D(~y)

O1 ≡ OQQ̄+π = Γ̃ABQ̄
a
A(~x)Uab(~x , t;~y , t)Qb

B(~y)
∑
~z

q̄cC (~z) (γ5)CD qcD(~z)

C (t) =

2 extract the potentials with the Generalized Eigenvalue Problem (GEP).

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 15 / 18



BB̄ systems

To separate these structures, we ...

1 implement a correlation matrix

Cjk(t) = 〈Ω| O†j (t)Ok(0) |Ω〉 ≈
large t

A0
jk exp (−V0(r)t)+A1

jk exp (−V1(r)t)+. . .

O0 ≡ OBB̄ = ΓAB Γ̃CDQ̄
a
C (~x)qaA(~x)q̄bB(~y)Qb

D(~y)

O1 ≡ OQQ̄+π = Γ̃ABQ̄
a
A(~x)Uab(~x , t;~y , t)Qb

B(~y)
∑
~z

q̄cC (~z) (γ5)CD qcD(~z)

C (t) =

2 extract the potentials with the Generalized Eigenvalue Problem (GEP).

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 15 / 18



BB̄ systems

Preliminary results I
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• QQ̄ + π: ground state (blue)

• first excited state of the 2x2 matrix: free of contributions of QQ̄ + π (red)
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BB̄ systems

Preliminary results II

Binding energy

• Identical analysis as in the BB case (Schrödinger’s equation) yields for
quantum numbers I (JP) = 1(1+) (i.e. Z+

b ):

EB = (−58± 71)MeV

• very vague indication for a ūdb̄b bound state
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BB̄ systems

Summary BB and BB̄ systems

• BB systems are experimentally hard to observe, but theoretically easier to
investigate

• For a BB system with light quarks qq = ud and static b̄ quarks with
quantum numbers I (JP) = 0(1+) we find EB = −90+43

−36 MeV
−→ binding with more than 2σ confidence level

• This result is supported by preliminary computations with 4 quarks of finite
mass.

• BB̄ systems are experimentally more easy to access than BB systems, but
theoretically more challenging.

• Candidate for a binding BB̄ state with I (JP) = 1(1+) (i.e. Z+
b ) is currently

investigated, we find EB = (−58± 71) MeV

• Work in progress

Thank you.
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Backup
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Meson content of a four-quark state

• One can extend the meson content of the four-quark states by application of
the following light quark projectors on O:

• Parity projectors: PP=+ = 1+γ0
2

and PP=− = 1−γ0
2

• Spin projectors: Pjz=↑ = 1+iγ0γ3γ5
2

and Pjz=↓ = 1−iγ0γ3γ5
2

• P = −: S state, meson in the ground state

• P = +: P state, first excitation

• ↑↓: light quark angular momentum

• An example for OBB̄ :
• Γ = γ5 =̂ + S ↑S ↑+ S ↓S ↓+P ↑P ↑+P ↓P ↓
• Γ = γ0γ5 =̂ −S ↑S ↑− S ↓S ↓+P ↑P ↑+P ↓P ↓
• Therefore a BB̄ state with Γ = γ5 − γ0γ5 only contains S mesons.
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The BB system - Expectations

small separations of the static
antiquarks:

• interaction due to 1-gluon
exchange

• bound state: static Q̄Q̄ pair in a
color triplet (attractive) −→
antidiquark

large separations of the static
antiquarks:

• screening of the
antiquark-antiquark interaction
due to light quarks (stronger, the
more massive the light quarks)

• basically 2 static-light mesons
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Lattice Setups

BB and BB̄ in the static-light approach:

Ens. β lattice aµ mπ[MeV] a [fm] L [fm] confs
B40.24 3.90 243 × 48 0.0040 340 0.0790(26) 1.9 480
B85.24 3.90 243 × 48 0.0085 480 0.0790(26) 1.9 400

B150.24 3.90 243 × 48 0.0150 650 0.0790(26) 1.9 260
Gauge configurations generated by ETMC

BB∗ with NRQCD:

Ens. β lattice amu,d ams mπ[MeV] a [fm] L [fm] confs
C54 2.13 243 × 64 0.005 0.04 336 0.1119(17) 2.7 1676

Gauge configurations generated by RBC and UKQCD collaborations

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 4 / 9



Different attractive BB channels

• spin scalar isosinglet:
• qq spin jz = 0

• antisymmetric flavour
qq ∈ {(ud − du)/

√
2, (s1s2 − s2s1)/

√
2, (c1c2 − c2c1)/

√
2)}

• I (JP) = 0(1+)

• spin vector isotriplet:
• qq spin jz = 1
• symmetric flavour qq ∈ {uu, (ud + du)/

√
2, dd , ss, cc}

• I (JP) ∈ {1(0+), 1(1+), 1(2+)}

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 5 / 9



Different attractive BB channels

• spin scalar isosinglet:
• qq spin jz = 0
• antisymmetric flavour

qq ∈ {(ud − du)/
√

2, (s1s2 − s2s1)/
√

2, (c1c2 − c2c1)/
√

2)}

• I (JP) = 0(1+)

• spin vector isotriplet:
• qq spin jz = 1
• symmetric flavour qq ∈ {uu, (ud + du)/

√
2, dd , ss, cc}

• I (JP) ∈ {1(0+), 1(1+), 1(2+)}

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 5 / 9



Different attractive BB channels

• spin scalar isosinglet:
• qq spin jz = 0
• antisymmetric flavour

qq ∈ {(ud − du)/
√

2, (s1s2 − s2s1)/
√

2, (c1c2 − c2c1)/
√

2)}
• I (JP) = 0(1+)

• spin vector isotriplet:
• qq spin jz = 1
• symmetric flavour qq ∈ {uu, (ud + du)/

√
2, dd , ss, cc}

• I (JP) ∈ {1(0+), 1(1+), 1(2+)}

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 5 / 9



Different attractive BB channels

• spin scalar isosinglet:
• qq spin jz = 0
• antisymmetric flavour

qq ∈ {(ud − du)/
√

2, (s1s2 − s2s1)/
√

2, (c1c2 − c2c1)/
√

2)}
• I (JP) = 0(1+)

• spin vector isotriplet:

• qq spin jz = 1
• symmetric flavour qq ∈ {uu, (ud + du)/

√
2, dd , ss, cc}

• I (JP) ∈ {1(0+), 1(1+), 1(2+)}

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 5 / 9



Different attractive BB channels

• spin scalar isosinglet:
• qq spin jz = 0
• antisymmetric flavour

qq ∈ {(ud − du)/
√

2, (s1s2 − s2s1)/
√

2, (c1c2 − c2c1)/
√

2)}
• I (JP) = 0(1+)

• spin vector isotriplet:
• qq spin jz = 1

• symmetric flavour qq ∈ {uu, (ud + du)/
√

2, dd , ss, cc}
• I (JP) ∈ {1(0+), 1(1+), 1(2+)}

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 5 / 9



Different attractive BB channels

• spin scalar isosinglet:
• qq spin jz = 0
• antisymmetric flavour

qq ∈ {(ud − du)/
√

2, (s1s2 − s2s1)/
√

2, (c1c2 − c2c1)/
√

2)}
• I (JP) = 0(1+)

• spin vector isotriplet:
• qq spin jz = 1
• symmetric flavour qq ∈ {uu, (ud + du)/

√
2, dd , ss, cc}

• I (JP) ∈ {1(0+), 1(1+), 1(2+)}

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 5 / 9



Different attractive BB channels

• spin scalar isosinglet:
• qq spin jz = 0
• antisymmetric flavour

qq ∈ {(ud − du)/
√

2, (s1s2 − s2s1)/
√

2, (c1c2 − c2c1)/
√

2)}
• I (JP) = 0(1+)

• spin vector isotriplet:
• qq spin jz = 1
• symmetric flavour qq ∈ {uu, (ud + du)/

√
2, dd , ss, cc}

• I (JP) ∈ {1(0+), 1(1+), 1(2+)}

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 5 / 9



Different attractive BB channels

• spin scalar isosinglet:
• qq spin jz = 0
• antisymmetric flavour

qq ∈ {(ud − du)/
√

2, (s1s2 − s2s1)/
√

2, (c1c2 − c2c1)/
√

2)}
• I (JP) = 0(1+)

• spin vector isotriplet:
• qq spin jz = 1
• symmetric flavour qq ∈ {uu, (ud + du)/

√
2, dd , ss, cc}

• I (JP) ∈ {1(0+), 1(1+), 1(2+)}

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 5 / 9



Perform a large number of fits varying...

• the temporal separation at which the lattice potential is read of the
correlation function

• the range at which the fit to the potential is performed

Binding for light isosinglet channel only!

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 6 / 9



Perform a large number of fits varying...

• the temporal separation at which the lattice potential is read of the
correlation function

• the range at which the fit to the potential is performed

Binding for light isosinglet channel only!

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 6 / 9



Perform a large number of fits varying...

• the temporal separation at which the lattice potential is read of the
correlation function

• the range at which the fit to the potential is performed

Binding for light isosinglet channel only!

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 6 / 9



Perform a large number of fits varying...

• the temporal separation at which the lattice potential is read of the
correlation function

• the range at which the fit to the potential is performed

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

α

d in fm

qq = (ud-du)/√2     qq= uu, (ud+du)/√2, dd

 -0.1 MeV

-20 MeV

-60 MeV

-100 MeV

rmin=3a rmin=2a scalar vector
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

α

d in fm

qq = (s(1)s(2)-s(1)s(2))/√2     qq = ss

 -0.1 MeV

-20 MeV

-60 MeV

-100 MeV

rmin=3a rmin=2a scalar vector

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

α

d in fm

qq = (c(1)c(2)-c(1)c(2))/√2

 -0.1 MeV

-20 MeV

-60 MeV

-100 MeV

 rmin=3a rmin=2a scalar

Binding for light isosinglet channel only!

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 6 / 9



Perform a large number of fits varying...

• the temporal separation at which the lattice potential is read of the
correlation function

• the range at which the fit to the potential is performed

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

α

d in fm

qq = (ud-du)/√2     qq= uu, (ud+du)/√2, dd

 -0.1 MeV

-20 MeV

-60 MeV

-100 MeV

rmin=3a rmin=2a scalar vector
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

α

d in fm

qq = (s(1)s(2)-s(1)s(2))/√2     qq = ss

 -0.1 MeV

-20 MeV

-60 MeV

-100 MeV

rmin=3a rmin=2a scalar vector

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

α

d in fm

qq = (c(1)c(2)-c(1)c(2))/√2

 -0.1 MeV

-20 MeV

-60 MeV

-100 MeV

 rmin=3a rmin=2a scalar

Binding for light isosinglet channel only!

Antje Peters (Goethe University Frankfurt) BB and BB̄ four-quark systems June 8, 2016 6 / 9



Extrapolation to the physical pion mass

Example plots for a t-range [4a...9a]
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The GEP

1 Build a matrix C (t) of correlation functions Cij(t)

2 Solve the GEP:

Cjk(t)v
(n)
k (t, t0) = λ(n)(t, t0)Cjk(t0)v

(n)
k (t, t0)

3 And find:

m
(n)
eff (t, t0) = lim

t→∞

1

a
log

λ(n)(t, t0)

λ(n)(t + a, t0)
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Choice of Γ for the BB̄ system

• The choice of the matrix Γ is constrained by the quantum numbers of the
OQQ̄+π

• Only taking into account OBB̄ we find the strongest attraction for
Γ = γ5 − γ0γ5
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